AVS 61st International Symposium & Exhibition
    Scanning Probe Microscopy Focus Topic Thursday Sessions
       Session SP+2D+AS+EM+MC+NS+SS-ThM

Paper SP+2D+AS+EM+MC+NS+SS-ThM2
The Fundamentals of Charge Transport at Oxide and Ferroelectric Interfaces

Thursday, November 13, 2014, 8:20 am, Room 312

Session: Probing Electronic and Transport Properties
Presenter: Ramsey Kraya, University of Pennsylvania
Authors: R. Kraya, University of Pennsylvania
L.Y. Kraya, University of Pennsylvania
Correspondent: Click to Email

Here we investigate how charge transport properties at metal-semiconductor interfaces scale down to the nanoscale regime, comparing the properties to macroscopic interfaces and providing a perspective on what it means to device manufacturing. Strontium titanate - the prototypical oxide material - has been widely studied for applications in thermoelectrics, nanoelectronics, catalysis, and other uses, and behaves as an n-type semiconductor when doped. We investigated how charge transport is effected at interfaces to stronitium titanate under a wide range of conditions - by varying contact size, interface shape, dopant concentration, and surface structure and in various combinations. The results of the analysis have wide ranging implications, especially for ferroelectric oxide materials and serves as the basis for understanding and controlling switching effects - both polarization and oxygen migration based switching.