AVS 61st International Symposium & Exhibition | |
Fundamentals & Biological, Energy and Environmental Applications of Quartz Crystal Microbalance Focus Topic | Thursday Sessions |
Session QC+AS+BI+MN-ThA |
Session: | Applications of QCM |
Presenter: | Hannah Askew, Swinburne University of Technology, Australia |
Authors: | H.J. Askew, Swinburne University of Technology, Australia S.L. McArthur, Swinburne University of Technology, Australia |
Correspondent: | Click to Email |
Supported lipid bilayers (SLBs) have provided researchers with stable and reproducible platforms to recreate cell membrane environments. Such models are useful for studying a variety of processes including cell signalling and drug-membrane interactions. Unfortunately, current models are lacking in their ability to mimic complex micro and nanoscale architectures found within native cell membranes. Many methods of SLB patterning have emerged to form these complex structures. In particular pre-patterned substrates combined with vesicle collapse are of great interest as they eliminate complications associated with preserving membrane integrity during patterning. Plasma polymerisation provides a versatile, one step, dry method of creating thin films of different chemistries on almost any substrate. Successful bilayer formation on such coatings would be beneficial for promoting specific organisation in complex SLB systems using patterned surface chemistries. In the initial stages of this work we studied the effect of plasma polymer chemistry on the lipid structures formed using vesicle collapse. DOPC lipid vesicles were introduced to commonly used coatings formed from plasma polymerised allylamine (ppAAm) and acrylic acid (ppAAc). The coatings were characterised using X-Ray Photoelectron Spectroscopy (XPS), contact angle and Quartz Crystal Microbalance with Dissipation (QCM-D) techniques. Lipid interaction kinetics and lipid mobility were characterised using QCM-D and Fluorescence Recovery after Photobleaching (FRAP) respectively. It was shown that a variety of lipid structures including mobile bilayer can be formed on ppAAc using pH alone to control electrostatic interactions. ppAAm formed immobile vesicular layers under all conditions tested and could therefore be used as a barrier to confine fluid areas of bilayer. Work is now being undertaken to create single and dual plasma polymer patterns on both glass and silicon wafer. Standard photolithography and ion beam methods will be employed to pattern on both a micro and nanoscale. In this way plasma polymer patterns may enable the formation of increasingly complex SLB architectures.