AVS 61st International Symposium & Exhibition
    Helium Ion Microscopy Focus Topic Thursday Sessions
       Session HI+2D+AS+MC-ThA

Invited Paper HI+2D+AS+MC-ThA6
Circuit Edit Nanomachining Study using Ne+ & He+ Focused Ion Beam

Thursday, November 13, 2014, 4:00 pm, Room 316

Session: Nanoengineering with Helium Ion Beams
Presenter: Richard Livengood, Intel Corporation
Authors: R.H. Livengood, Intel Corporation
S. Tan, Intel Corporation
Correspondent: Click to Email

FIB nanomachining has been used extensively for over 20 years for the purpose of rewiring integrated circuits to validate design changes, isolate process faults, and generate engineering samples. During this time frame, the minimum feature size of an IC (Moore’s Law) has scaled from 500nm to 14nm (36X) compared with ~6X scaling of Ga+ FIB. As a result FIB nanomachining capabilities have been steadily erroding over the last several generations, limiting the types of circuit modifications that can be sucessfully completed. There are however, several promising new ion beam scaling R&D initiatives that provide hope of enabing further nanomachining scaling into the sub 10nm process node.

One such technology is GFIS (gas field ion source) technology. He+ GFIS based FIBs have been successfully used to image with sub 0.5nm resolution and nanomachine sub 10 nm structure in Au, Graphine, and other thin film structures.[1, 2, 3] More recently He+ and Ne+ GFIS sputtering properties have been studied for nanomachining in bulk semiconductor films.[4] In this paper, we will show our latest results on GFIS FIB GAE (gas assisted etch) nanomachining and IBID properties and electrical invasiveness impact.

References

[1] J. Notte, M. Rahman, L. Farkas, S. Tan, and R. Livengood, Scanning 33, 1 (2011).

[2] D. S. Pickard, V. Viswanathan, M. Bosman, J. Dorfmüller, H. Giessen, Z. Ai, H. Hao, M. Mahmoudi, Yue Wang and Chao Fang, Invited talk, EIBPN-HIM Session (2012)

[3] V. Sidorkin, E. v. Veldhoven, E. v der Drift, P. Alkemade, H. Salemink, D. Mass, J. Vac. Sci. Technol. B 27 (4) (2009)

[4] S. Tan, R. Livengood, D. Shima, P. Hack, R. Hallstein, J. Notte, and S. McVey, JVST B, 29 (6), 06F604 (2011).