Invited Paper EM2-ThA6
Innovating Organic Electronics and Photonics
Thursday, November 13, 2014, 4:00 pm, Room 314
Printed organic electronics, a technology based on organic semiconductors that can be processed into thin films using vacuum processing or conventional printing and coating techniques, has been the subject of active research and development over the past decades. A range of solid-state devices, including organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), photodiodes, and solar cells, have been demonstrated with this new class of materials. However, despite a steady progress in performance, many challenges remain and further scientific and technological advances are required before this emerging technology can unleash its full potential.
In this talk, we will review recent advances both in materials and device architectures in a series of organic semiconductor devices. First, we will present progress in organic light-emitting devices with an unconventional architecture that yield current efficacies of 200 cd/A at a luminance of 1000 nits and 100 cd/A at 100,000 nits. Next, we will discuss a new organic field-effect transistor geometry that yield unprecedented environmental stability and allows for continuous reversible sensing in aqueous media. In a third part, we will discuss recent advances in organic photovoltaic devices. A new method to produce air-stable low work function electrodes as a substitute for Ca will be presented. This method is based on surface modification by water-soluble polymers that physisorb to the surface of various conductors and lead to large surface dipoles that shift the vacuum level (> 1 eV) reducing the injection or collection barrier for electrons. We will show that these advances in interface modification can be used to design organic solar cells with novel architectures that can overcome some of the economic hurdles of current approaches and accelerate the deployment of these technologies. We will show that the current-voltage characteristics of organic solar cells can be modeled with engineering-inspired equivalent circuit models. Strategies based on transfer lamination will be presented that allow for a drastic reduction of parasitic shunt effects, enabling solar cells with unprecedented dynamic range. Finally, we will discuss how to minimize the environmental footprint of organic electronic technologies.