AVS 61st International Symposium & Exhibition | |
2D Materials Focus Topic | Thursday Sessions |
Session 2D+EM+MI+MN+NS+SS+TF-ThA |
Session: | Novel Quantum Phenomena in 2D Materials |
Presenter: | Daniel Gunlycke, Naval Research Laboratory |
Authors: | D. Gunlycke, Naval Research Laboratory C.T. White, Naval Research Laboratory |
Correspondent: | Click to Email |
Offering room-temperature ballistic electron transport well over one micron, while being atomically thin and planar, graphene is undeniably a promising material for future nanoelectronic devices. Presently, however, switchable devices have normally low on-off ratios, a reflection of the challenge of selectively blocking electron and hole carriers from propagating across the graphene surface. This has stimulated a lot of research on different methods for making graphene nanoribbons that exhibit suitable band gaps. An alternative way to obtain a controllable gap takes advantage of resonant tunneling across a pair of transport barriers. For the latter approach, the key is to find a barrier that is fairly reflective but not so much as to effectively cut off all transport across it.
In this presentation, we present a model for straight transport barriers in graphene in the specular limit. Using the Lippmann-Schwinger equation, we obtain the wave function, from which we derive the reflection and transmission probabilities, as well as the local density of itinerant states. This local density of states exhibits fluctuations arising from quantum interference between incoming and outgoing matter waves that allow the transport properties of a barrier to be estimated without explicitly probing the current across the barrier. Our model is tested against exact multi-channel, tight-binding quantum transport calculations for graphene with weak local potentials, local strain, local adsorption, and a locally defective structure. As the model parameters are related to observable quantities, they could be obtained from theory and/or experiment, allowing the model to be adopted even when the precise details of the barrier are unknown.