AVS 60th International Symposium and Exhibition
    Vacuum Technology Monday Sessions
       Session VT-MoM

Paper VT-MoM5
Fully Automated Flowmeter for Low Gas-Flows Based on Pinhole Apertures

Monday, October 28, 2013, 9:40 am, Room 202 C

Session: Vacuum Measurement and Metrology
Presenter: J.A. Fedchak, National Institute of Standards and Technology (NIST)
Correspondent: Click to Email

We report results from a new flowmeter built at NIST that based upon gas flow through a laser-drilled pin-hole orifice. Dubbed the orifice flowmeter (OFM), it is base on a relatively simple principle: A pinhole orifice with a known conductance can be used as a secondary flow standard; the gas flow is determined from the known conductance and the upstream pressure and temperature. A flowmeter based upon an appropriate set of orifices is easy to operate and automate. We are primarily interested in using the OFM as a standard to produce nitrogen gas flows into vacuum in the range of 10-11 mol/s to 10-6 mol/s (10-7 to 10-2 cm3/s; STP) for vacuum gauge calibrations. Commercially available laser-drilled pinhole orifices with diameters from 1 μm to 50 μm can have molecular-flow conductances ranging from about 0.1 μL/s to 230 μL/s for N2 at 23 °C, and can be used to produce gas flows in the range of interest by applying an upstream pressure in the range of 10 Pa to 100 kPa (0.1 to 760 torr). Accurate measurements of the orifice conductance, or gas flow, as a function of pressure are required to use the pinhole orifice as a basis of a flowmeter. This was performed using the NIST bellows flowmeter, a primary gas flow standard, to directly measure the conductance of a pinhole orifice over the entire pressure range of interest. We have constructed a fully automated flowmeter based upon conductance measurements of two pin-hole orifices that can be used for nitrogen and other gas flows. In this presentation, the construction and characterization of the OFM will be described and recent results will be presented.