AVS 60th International Symposium and Exhibition
    Surface Science Thursday Sessions
       Session SS2-ThA

Invited Paper SS2-ThA8
Single Molecule Spectroscopy and Reactions at Surfaces

Thursday, October 31, 2013, 4:20 pm, Room 202 A

Session: Surface Dynamics and Non-adiabatic Processes
Presenter: M. Kawai, The University of Tokyo, Japan
Authors: M. Kawai, The University of Tokyo, Japan
Y. Kim, RIKEN, Japan
N. Takagi, The University of Tokyo, Japan
Correspondent: Click to Email

Ultimate spatial resolution of scanning tunneling microscope (STM) enables us to observe the inner electronic, vibrational [1-6] and spin [7-9] structures of a molecule adsorbed on solid surfaces. Vibrational spectrum of a single molecule provides useful information not only for the chemical identification of the molecule [1] but also for investigating how molecular vibrations can couple with the relevant dynamical processes [2-6], where the response of vibrationally mediated molecular motion to applied bias voltage, namely an “action spectrum”, can reveal vibrational modes that are excited through STM inelastic tunneling processes, because the molecular motion is induced only via the inelastic tunneling processes [3-5]. Molecular spin can couple with electrons of metal substrates. Depending on the strength of the coupling spin state of the molecule changes. Examples are given for Iron phthalocyanine (Fe-Pc) adsorbed on Cu, Au and Ag. With strong coupling with Cu(110) the spin is completely killed whereas if decoupled as on Cu(110) 2x1-O, spin survives with change in the direction of easy axis [7]. On Au weak coupling leads to appearance of Kondo state, where a competition between the RKKY interaction affects the spin state [8]. Kondo state of FePc on Au depends on the adsorption site, where the difference was originating from the coupling with the substrate electrons [9-10].

References :

[1] Y. Kim, T. Komeda, and M. Kawai, Phys. Rev. Lett. 89 (2002) 126104. S. Katano, M. Trenary, Y. Kim and M. Kawai, Science316 (2007) 1883.

[2] T. Komeda, Y. Kim, M. Kawai, et al., Science295 (2002) 2055.

[3] Y. Sainoo, Y. Kim, T. Okawa, et al., Phys. Rev. Lett.95 (2005) 246102.

[4] M. Ohara, Y. Kim and M. Kawai, Phys. Rev. Lett.100 (2008) 136104.

[5] K. Motobayashi, Y. Kim, H. Ueba and M. Kawai, Phys. Rev. Lett.105 (2010) 076101.

[6] H.-J. Shin, J. Jung, K. Motobayashi, S. Yanagisawa, Y. Morikawa, Y. Kim and M. Kawai, Nature Materials9 (2010) 442-447.

[7] N. Tsukahara, K. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin and M. Kawai, Phys. Rev. Lett.102 (2009) 167203.

[8] N. Tsukahara, S. Shiraki, S. Itou, N. Ohta, N. Takagi, and M. Kawai, Phys. Rev. Lett.106 (2011) 187201.

[9] E. Minamitani, D. Matsunaka, N. Tsukahara, N. Takagi, M. Kawai, Y. Kim, e-J. Surf. Sci. Nanotech.10 (2012) 38.

[10] E. Minamitani, N. Tsukahara, D. Matsunaka, Y. Kim, N. Takagi, and M. Kawai, Phys. Rev. Lett.109 (2012) 086602.