AVS 60th International Symposium and Exhibition
    Manufacturing Science and Technology Monday Sessions
       Session MS+AS+EM+NS+PS+TF-MoA

Invited Paper MS+AS+EM+NS+PS+TF-MoA8
Phase Change Memory

Monday, October 28, 2013, 4:20 pm, Room 202 B

Session: IPF 2013-Manufacturing Challenges for Emerging Technologies: III. Manufacturing Challenges: Electronics
Presenter: R. Bez, Micron, Italy
Correspondent: Click to Email

Phase Change Memory (PCM) is a Non-Volatile Memory (NVM) technology that provides a set of features interesting for new applications, combining features of NVM and DRAM. PCM is at the same time a sustaining and a disruptive technology. From application point of view, PCM can be exploited by all the memory systems, especially the ones resulting from the convergence of consumer, computer and communication electronics. PCM technology relies on the ability of chalcogenide alloys, typically Ge2Sb2Te5 (GST), to reversibly switch from amorphous state to poly-crystalline state. The two stable states differs for electrical resistivity, thus the information is stored in the resistance of the bit.

The alteration of the bit is possible thanks to melt-quench of the active material achieved by fast (10-100ns) electrical pulses. The energy delivered to program a bit is in the order of 10pJ, with a state of the art access time of 85ns, read throughput 266MB/s and write throughput 9MB/s. These peculiar features combined with data retention, single bit alterability, execution in place and good cycling performance enables traditional NVM utilizations but also already opened applications in LPDDR filed. Moreover PCM is considered the essential ingredient to push to the market the so called Storage-Class Memory (SCM), a non-volatile solid-state memory technology that is capable of fill the gap between CPU and disks.

In this perspective PCM technology can be effectively exploited in wireless systems, in solid state storage subsystem, in PCIe-attached storage arrays and in computing platform, exploiting the non-volatility to reduce the power consumption.

In order to be able to enter into a well established memory market there are key factors that must be fulfilled: i) match the cost of the existing technology in terms of cell size and process complexity, ii) find application opportunities optimizing the overall “memory system” and iii) provide a good perspective in terms of scalability. Phase Change Memory has been able so far to progress in line with all these requirements. Aim of this presentation is to review the PCM technology status and to discuss specific opportunities for PCM to enter in the broad memory market.