AVS 60th International Symposium and Exhibition
    Ions at Aqueous Interfaces Focus Topic Tuesday Sessions
       Session IA+BA-TuA

Invited Paper IA+BA-TuA7
Revealing the Dynamics of Lipid Composition in Phospholipid Bilayers by Sum-Frequency Vibrational Spectroscopy

Tuesday, October 29, 2013, 4:00 pm, Room 201 B

Session: Ions and Biomolecules at Aqueous Interfaces
Presenter: J. Conboy, University of Utah
Correspondent: Click to Email

A membrane, only two molecules thick, surrounds all cells and is responsible for controlling the passage of materials in and out of the cell in a selective manner. Our current understanding of the structure and dynamics of cellular membranes emerged in the early 1970’s. However, there is still much we do not know about this seemingly simple “shell” which makes life as we know it possible. For example, the location of the negatively charged phosphatidylserine (PS) headgroup lipids has drastic effects on cell function, ranging from coagulation to apoptosis. The localization of PS in one leaflet of the membrane is governed by a complex interplay between kinetic and thermodynamic factors. However, the kinetics of PS exchange has not been studied in detail. Using methods of classical surface chemistry coupled with nonlinear optical methods, we have developed a novel analytical approach, using sum-frequency vibrational spectroscopy (SFVS), to selectively probe lipid compositional asymmetry in a planar supported lipid bilayer. SFVS has been used to measure both the compositional asymmetry and kinetics of PS and phosphatidylcholine (PC) lipid flip-flop in planar supported lipid bilayers composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dihexadecanoyl-sn-glycero-3-phospho-L-serine (DPPS). The transition state thermodynamics of DSPC and DPPS were measured at biologically relevant compositions ranging from 10 to 35 % DPPS. The activation thermodynamics of DSPC and DPPS and their impact on compositional asymmetry will be discussed in detail.