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Late Breaking Session 
Room: 14 - Session LB+EM+GR+MN+TR-WeA 

Select Topics in Surface and Interface Science 
Moderator: C.R. Eddy, Jr., U.S. Naval Research 
Laboratory, J.M. Fitz-Gerald, University of Virginia 

2:00pm  LB+EM+GR+MN+TR-WeA1  Degradation Kinetics of Hard 
Gold Tribofilms, N. Argibay, M.T. Dugger, M.T. Brumbach, S.V. Prasad, 
Sandia National Laboratories 
Hard gold coatings are low alloy (> 98% Au) films exhibiting relatively low 
friction, electrical contact resistance (ECR) and chemical reactivity, making 
them uniquely suited for use in dynamic electrical connections. Hardness is 
primarily a result of grain refinement achieved through alloying. At 
relatively low temperature (approx < 0.5Tm) the diffusion of codeposited 
and underlayer species toward the free surface, dominated by grain 
boundary and pipe diffusion, has been identified as a principal degradation 
pathway. The consequent formation of metal oxides deteriorates ECR and 
often contributes to increased wear and friction. A clear antagonistic 
relationship exists between the hardening mechanism that improves 
tribological performance and the diffusion phenomena that reduce useful 
lifespan. This talk focuses on the role of diffusion and film morphology on 
the aging and degradation of the tribological and electrical characteristics of 
hard gold films. 

2:20pm  LB+EM+GR+MN+TR-WeA2  Effect of Nitrogen 
Concentration on the Surface Properties of Plasma Nitrided Tool 
Steels, P. Abraha, J. Miyamoto, Meijo University, Japan 
The nitriding of tool steel was performed in electron beam excited plasma 
using neutral nitrogen species and nitrogen ions. The plasma apparatus is 
composed of three regions: the discharge region, the acceleration region and 
the processing region. This set up has the advantage of controlling the 
energy and number of electrons involved in producing the plasma 
independently.  

In this study, the control of the nitrogen concentration on the formation of 
the hard but brittle compound layer and the effect on the tribology of the 
tool steel surface were investigated. Electron probe micro-analyzer (EPMA) 
results revealed that nitrogen concentration of samples nitrided by neutral 
nitrogen species had deep diffusion layer before reaching the threshold 
value of 6% nitrogen concentration that is necessary for the formation of the 
compound layer. Whereas in the samples nitrided by nitrogen ions, 
compound layer was confirmed right from the onset of the nitriding process.  

The results of our experiments show that in nitriding the tool steel for 6h, 
below the threshold value, a mirror finish surface (Ra=14nm) with a deep 
diffusion layer of (up to 80 micrometers) and a surface hardness of more 
than two times (1300 Hv) that of the untreated sample (600 Hv) were 
produced. Our results demonstrate that neutral species based nitriding is 
effective for high performance and high precision mechanical components 
that require high hardness and wear resistance without altering the as 
finished dimensional accuracy, surface roughness and appearance. 

2:40pm  LB+EM+GR+MN+TR-WeA3  High Strength Carbon Fiber 
Composite Wafers for Microfabrication, L. Pei, K. Zufelt, R. VanFleet, 
R.C. Davis, J. Lund, K. Jones, B.D. Jensen, Brigham Young University, J. 
Abbott, M. Harker, M. Zappe, S. Liddiard, Moxtek 
Carbon fiber composites are very high strength materials that could be 
enabling materials for micro and mesoscale applications. These materials 
have comparable strength to silicon but are much less brittle and can 
achieve four times higher strain. Several challenges must be overcome 
before carbon fiber composite devices can be fabricated on this scale. One 
challenge is the fabrication of ultra-thin wafers with low void density and 
low surface roughness. Another challenge is the ability to reliably machine 
the material into desired patterns. Here we present a method for curing 
carbon fiber wafers (~100 μm thick) with low surface roughness, low void 
density, a modulus of 50 GPa, and a yield strength of ~3.6 GPa. These 
wafers are suitable for laser machining into high fidelity micro and 
mesoscale structures. We will present laser micromachined devices made 
from these wafers including a series of high strength support structures for 
ultrathin membranes and a high-dynamic-range accelerometer. 

4:00pm  LB+EM+GR+MN+TR-WeA7  Selective Graphitization using 
Multi-Ion Beam Lithography, J. Fridmann, Raith USA Inc., S. Tongay, 
University of California, Berkeley, M. Lemaitre, A.F. Hebard, B. Gila, 
University of Florida, A. Nadzeyka, Raith GmbH, Germany, F. Ren, X. 
Wang, University of Florida, D.K. Venkatachalam, R.G. Elliman, Australian 
National University, Australia, B.R. Appleton, University of Florida 
Promising techniques for growing graphene on SiC single crystals for 
electronic device fabrication include heating in UHV above the 
graphitization temperature (TG)1; or processing them in vacuum using 
pulsed excimer laser2. 

We report recent findings on the graphitization of SiC using a patterned Ga 
implantation, in which the implanted regions exhibit reduced TG and 
enhanced graphitization above TG. Here we report an approach that 
combines ion implantation, thermal or pulsed laser annealing (PLA), and 
multi-ion beam lithography (MIBL) to both pattern and synthesize graphene 
nanostructures on SiC single crystals at low temperatures. This approach 
utilizes a MIBL system developed at the University of Florida in 
collaboration with Raith for implantation/nanofabrication, in combination 
with thermal annealing in vacuum or PLA with a 25 ns pulsed ArF laser in 
air. To investigate the mechanisms and the effects of the implanted species, 
ion damage, and annealing, samples were also subjected to broad-area ion-
implantations using facilities at the Australian National University. 

It has recently been shown that implantation of Si, Ge, Au, or Cu followed 
by thermal annealing in vacuum below the TG of SiC can selectively grow 
graphene only where the ions are implanted, and that graphene nanoribbons 
a few nanometers to microns wide can be formed using MIBL3. 
Additionally, we will show that graphene can be formed on implanted 
and/or unimplanted SiC by ArF PLA in air, at fluences from 0.4-1.2 J/cm2. 
AES, SEM, X-sectional TEM, micro-Raman analyses and heat flow 
simulations are presented to verify graphene growth and explain the effects 
and mechanisms involved.  

1. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. 
Marchenkov, E. H.Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. 
108, 19912 (2004)  

2. Sangwon Lee, Michael F. Toney, Wonhee Ko, Jason C. Randel, Hee 
Joon Jung, Ko Munakata,Jesse Lu, Theodore H. Geballe, Malcolm R. 
Beasley, Robert Sinclair, Hari C. Manoharan, and Alberto Salleo; ACS 
Nano Vol.4, No. 12, 7524-7530 (2010).  

3. S. Tongay, M. Lemaitre, J. Fridmann, A. F. Hebard, B. P. Gila, and B. R. 
Appleton, Appl. Phys. Lett. 100, 073501 (2012). 

4:20pm  LB+EM+GR+MN+TR-WeA8  Unrippling and Imaging of 
Extra-Large Free-Standing Graphene with Atomic Precision, W.W. Pai, 
R. Breitweiser, Y.C. Hu, Y.C. Chao, National Taiwan University, Taiwan, 
Republic of China, Y.R. Tzeng, Institute of Nuclear Energy Research of 
Taiwan, Republic of China, L.J. Li, Academia Sinica, Taiwan, Republic of 
China, K.C. Lin, Catholic Fu Jen University, Taiwan, Republic of China 
Nanoscale ripple is believed to be a common feature most manifested in 
free-standing graphene and is expected to play an important role in altering 
the coupling of graphene's electronic and geometric structures. Direct 
characterization of free-standing graphene ripple is challenging from atom-
resolved transmission electron microscopy (TEM) due to its limited depth 
resolution. Recent scanning tunneling microscopy (STM) of free-standing 
graphene uses small suspended area (1 or 5 microns) samples and can 
introduce uncontrolled tension that alters the intrinsic graphene structure. 
Here we report an STM study of suspended extra-large (~4000 micron2) Cu 
CVD graphene that was prepared with a resist-free transfer and characterize 
its electromechanical response in details. In our study, a series of controlled 
“Z-V” spectroscopy were carefully conducted. In Z-V spectroscopy, the tip 
displacement vs. sample bias in close-loop condition is recorded. This gives 
hints on the nature of interaction forces and the mechanical response of 
graphene. In contrast to a solid surface, the graphene membrane is very 
compliant and Z-V curves are characterized by a fast-rise regime and a 
plateau regime that follows. Graphene deformation up to 100 nm with 
simply a small ~1 V bias ramp was observed. We discovered that our 
graphene is in best analogy with a curved rubber band that maintains quasi-
static in shape until it is either pulled or pushed to tensile stress regimes. 
The graphene can be manipulated by the STM tip through electrostatic and 
van der Waals forces, with the latter being significant when it is repulsive. 
In its transit to tensile-stressed state, the graphene exhibits a series of 
sudden speed jump; we interpret these events as unrippling of graphene 
ripples and render support with molecular dynamics (MD) simulation. 
Atom-resolved graphene images provide direct evidence of nanoscale 
structure ripples in its intrinsic state and the smoothing out of such ripples 
in the tensile regimes. Surprisingly, on rippled monolayer graphene, 
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coexistence of triangular and hexagonal graphene lattices without tip 
condition change were observed. Our study provides a foundation to 
understand and control the electromechanical response of graphene (or 
other flexural atomic crystals) in its pristine two-dimensional form when 
subjected to a local proximal probe, therefore paves way to further 
investigate its structure-property correlation with atomic precision. 

4:40pm  LB+EM+GR+MN+TR-WeA9  Ultrafast Charge Transfer at 
Monolayer Graphene Surfaces with Varied Substrate Coupling, S. 
Lizzit, ELETTRA Sincrotrone Trieste, Italy, R. Larciprete, CNR , Institute 
of Complex Systems, Italy, P. Lacovig, ELETTRA Sincrotrone Trieste, 
Italy, K. Kostov, Bulgarian Academy of Sciences, Bulgaria, D. Menzel, 
Technische Universität München and Fritz Haber Institute, Germany 
The importance and scientific appeal of graphene monolayers (Gr) are out 
of question, and investigations of its electronic properties abound. Most of 
these center on the most spectacular region, that around the Dirac cone, 
which is also the most relevant region for possible devices. But regions 
outside of this region are also important, since their correct representation 
requires basic understanding, and since they may relate to applications in 
photonics, photochemistry, and contact formation. Also, static 
investigations are more frequent than those of dynamics.  

We present here the first investigation of electron dynamics at energies 
above the Fermi (and Dirac) energy but below the vacuum level [1]. To this 
purpose we used the core hole clock (CHC) method with adsorbed argon 
and measured the transfer rate of a localized electron (the 4s electron on 
core-excited Ar) to the surface of Gr monolayers with variable substrate 
coupling: strong but graded coupling for Gr on Ru(0001) ("valleys" and 
"hills"), and decoupled Gr ML on SiO2. We obtained the latter system by 
using the recently developed transfer-free approach [2] based on the 
synthesis of SiO2 layers directly below Gr epitaxially grown on Ru(0001), 
through a stepwise reaction between intercalated silicon and oxygen. This 
method provides the optimal system to study the electronic properties of Gr 
using spectroscopic approaches, such as the CHC method.  

We find strong variations of CT time between ~3 fs (Gr ML strongly 
coupled to substrate on Ru(0001) “valleys”) and ~ 16 fs (decoupled Gr on 
SiO2). A ratio of 1.7 is found between the “hills” and “valleys” of the 
corrugated Gr/Ru. The very fast CT on Gr/Ru valleys is interpreted as due 
to hybridized Ru orbitals "reaching through" the Gr layer which change 
with the relative Gr/Ru alignment and distance. On the decoupled Gr layers 
the intrinsic coupling to the Gr empty π* states determines the CT time. The 
intermediate CT time for the Gr hills on Ru shows that these regions are far 
from the "decoupled" condition. The results contribute new information on 
the still controversial states of Gr/Ru, and shed light on the empty density of 
states above Gr surfaces and the coupling to them in an energy range 
possibly important for photonic applications of Gr, such as solar energy 
conversion. 

[1] S. Lizzit, R. Larciprete, P. Lacovig, K.L.Kostov, D. Menzel, in 
preparation 

[2] S. Lizzit et al. Nanoletters (2012) DOI: 10.1021/nl301614j 

5:00pm  LB+EM+GR+MN+TR-WeA10  Fano Interference Effects in 
Hydrogen Intercalated Graphene, A. Boosalis, T. Hofmann, University of 
Nebraska-Lincoln, R. Elmquist, M. Real, National Institute of Standards and 
Technology (NIST), M. Schubert, University of Nebraska-Lincoln 
Graphene has been the focus of much recent research due to its unique 
electronic and optical properties, with potential for high performance 
electronics, tunable ultra-fast lasers, and transparent electrodes. Further 
development of graphene for commercial use requires effective large-area 
epitaxial production that maintains the desirable properties of exfoliated 
graphene. One such method of epitaxial graphene growth is thermal 
sublimation of Si from SiC. Sublimation of Si from the Si-face (0001) is the 
most controllable but produces a (6√ 3 × 6√ 3)R30° surface reconstructed 
layer prior to graphene formation. This layer can be altered by subsequent 
hydrogen intercalation, resulting in quasi-free-standing (QFS) epitaxial 
graphene. 

In order to determine the effect of hydrogen intercalation on the optical 
properties of graphene we performed spectroscopic ellipsometry 
experiments in a spectral range of 3 to 9 eV before and after hydrogen 
intercalation of buffer layer only carbon growth on 6H SiC (0001). 
Spectroscopic ellipsometry is a widely used technique for determining the 
optical properties of thin films, and can provide sensitivity to film quality, 
morphology, and strain. In the case of graphene sensitivity is obtained 
through the critical-point (CP) located at 5.1 eV and modified by a Fano 
interference. Analysis of absorption near the CP is achieved through a 
parameterized model dielectric function (MDF) which is varied until a best-
match between model and experimental data is obtained. 

Best-match model results show drastic changes in the imaginary part of the 
MDF between previous measurements of buffer layer only growth on SiC, 

and buffer layer growth after hydrogen intercalation. Buffer layer only 
growth exhibits a far greater absorption throughout the spectrum, with an 
exciton produced maximum energy point that is shifted toward the infrared 
from the CP energy. After hydrogen intercalation, the QFS graphene layer 
exhibits a lowered absorption with a maximum closer to that of the CP 
energy; displaying an MDF closer to that of theoretical predictions for 
graphene. 

In conclusion, hydrogen intercalation of buffer layer carbon growth on SiC 
(0001) has been shown to produce QFS graphene with optical properties 
closest to that of theoretical predictions for graphene, further proving its 
effectiveness as a tool for large-area epitaxial graphene production. In 
addition, buffer layer carbon growth shows optical properties sufficiently 
different from that of graphene to allow spectroscopic ellipsometry to 
become a viable in-situ monitor for commercial production of hydrogen 
intercalated graphene on SiC. 

5:20pm  LB+EM+GR+MN+TR-WeA11  In Situ Dry-Cleaning of 
Ge(100) Surface using H2O2, K. Kiantaj, T. Kaufman Osborn, T.J. Kent, 
A.C. Kummel, University of California San Diego 
Since Ge has higher hole and electron mobility compared to silicon, it is a 
good candidate for development of a new channel material in CMOS 
semiconductor devices. One of the obstacles in using Ge as a channel 
material is the high interface trap density between Ge and Ge native oxide. 
Air exposed Ge surfaces have a high density of defects and contaminants, 
but, in order to make optimal semiconductor devices, nearly perfect 
bonding between each unit cell and the gate oxide layer is required. 
Although there are many methods available for cleaning the Ge surface, the 
effectiveness of each of these methods highly depends on the cleanliness of 
the processing chambers. After cleaning, the Ge surface is typically 
functionalized with OH groups via water (H2O) or hydrogen peroxide 
(HOOH) during atomic layer deposition of the gate oxide. This OH 
functionalized surface ideally provides a high density of reactive sites for 
precursor nucleation. We have studied the effect of a very small amount of 
hydrocarbon in the processing chambers, and its effect on both the clean Ge 
surface and the OH functionalized surface since this may increase the 
density of interface traps and limit Equivalent Oxide Thickness (EOT) 
scaling. In-situ cleaned Ge surfaces as well as HOOH dosed surfaces have 
been studied after exposure to hydrocarbon contaminants with x- ray 
electron spectroscopy (XPS) and scanning tunneling microscopy (STM). An 
Argon ion source sputtering system was employed for in-situ cleaning of 
the Ge surface. After exposure to trace hydrocarbon contaminants, two 
different nanoscale features were observed by STM on the Ge and 
HOOH/Ge surfaces. One type of contamination denoted as carbon 
"nanoclusters" which are typically 0.3-0.5nm in height and 2-4nm in 
diameter. A distinctly different feature is observed on the Ge-OH 
terminated surface denoted as carbon "nanoflakes". In contrast to 
nanoclusters, nanoflakes were only observed on the Ge surfaces dosed with 
low concentration hydrogen peroxide. In the next step, a high concentration 
hydrogen peroxide source in combination with an ozone source was 
employed to study the removal of the contaminants from the Ge surface. 
Several dosing conditions and sample temperatures were studied and 
optimized. As the result, an atomically clean Ge surface were achieved by 
employing an all-dry in-situ process. The all-dry cleaning procedure does 
not involve any ion-milling or wet- cleaning procedures as both of these 
methods involve surface etching and result in surface roughness which is 
not desirable for semiconductor devices. 

5:40pm  LB+EM+GR+MN+TR-WeA12  Hf-based High-k Dielectrics 
for Ge MOS Stacks, S. Fadida, M. Eizenberg, Technion Israel Institue of 
Technology, Israel, L. Nyns, D. Lin, S. Van Elshocht, M. Caymax, IMEC, 
Belgium 
Ge has drawn much attention recently, being a leading candidate to serve as 
the channel material of future metal oxide field effect transistors 
(MOSFETs) due to its high carrier mobility with respect to Si. The interest 
in Ge is mostly because of its high hole mobility. Most of Ge related 
researches were focused so far on the challenge of Ge surface passivation. 
In this research we have moved on to the next challenge - finding a suitable 
high-k dielectric for a Ge-MOS stack. The high-k dielectric has to be 
chemically and thermally stable on top of the chosen passivation layer, have 
sufficiently high energy barriers with respect to Ge energy band edges, and 
have a large dielectric constant in order to obtain the required low effective 
oxide thickness (EOT). We have studied the chemical, structural and 
electrical properties of various Hf-based high-k dielectrics: HfO2, HfxZr1-

xO2, HfxAl1-xO2 and HfxGd1-xO2. All high-k dielectrics (4 nm thick) were 
deposited by atomic layer deposition (ALD) on top of a constant passivation 
stack composed of a thin GeO2 layer (0.7 nm thick) followed by a thin (2 
nm) ALD Al2O3 layer. The Al2O3 layer, which has high band offsets to Ge 
and GeO2, was added since HfO2, as many of the leading candidates for 
high-k dielectrics, are unstable on top of Ge or GeO2. A thorough and 
systematic electrical and chemical characterization of this complex gate 
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stack was carried out. The interesting results show that this challenge of 
seeking for a superior high-k is not detached from the passivation challenge. 
Surprisingly, we have found that although the passivation stack was kept 
constant for all systems studied, the apparent Dit (density of interface states) 
changes when the top high-k material is modified. Another interesting 
phenomenon is revealed when different methods of Dit characterization are 
compared - each method points out a different high-k as the one with the 
lowest Dit. These observations imply that the C-V characteristics do not 
reflect only the role of Ge interface traps, but also of traps throughout the 
whole stack, at least to a distance of 2.7 nm (the total thickness of the 
passivation stack) from the Ge surface . These results emphasize even more 
the great challenges in integrating Ge as a new channel material. We have 
also analyzed the band alignment for all high-k dielectrics using XPS with 
respect to the underlying layers. All high-k dielectrics have similar band 
gaps at the range of 5.2-5.9 eV. The conductance and valence band offsets 
with respect to Ge are all larger than 1 eV, which make them all suitable for 
Ge-MOSFETs in terms of band alignment.  
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