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Spectroscopic Ellipsometry for Photovoltaics and 
Semiconductor Manufacturing 
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Technology, the Netherlands, H. Wormeester, MESA+ 
Institute for Nanotechnology, Univeristy of Twente, 
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8:20am  EL+TF+AS+EM+SS+PS+EN+NM-MoM1  Multichannel 
Spectroscopic Ellipsometry: Applications in I-III-VI2 Thin Film 
Photovoltaics, R.W. Collins, D. Attygalle, P. Aryal, P. Pradhan, N.J. 
Podraza, University of Toledo, V. Ranjan, S. Marsillac, Old Dominion 
University INVITED 
Multichannel spectroscopic ellipsometry (SE) has been applied successfully 
as an in situ, real time tool for optimizing, monitoring, and controlling 
multi-stage deposition processes in various thin film photovoltaics (PV) 
technologies. A particularly challenging process optimization problem 
involves the thermal co-evaporation of individual elements of Cu, In, Ga, 
and Se in a three-stage process, which has proven to produce high quality 
Cu(In1-xGax)Se2 (CIGS) materials and high performance PV devices. This 
three-stage process provides a high level of flexibility in determining the 
phase, composition, and microstructure of the film, but also generates 
greater challenges in run-to-run reproducibility of the optimized process. 
Information extracted from real time SE measurements includes the 
evolution of the bulk layer and one or more surface layer thicknesses, as 
well as layer dielectric functions. The layer dielectric functions can be 
analyzed further to extract the phase and alloy compositions and the defect 
density or grain size, which can assist in understanding the fabrication 
process, in optimizing solar cells, and ultimately in monitoring and 
controlling the optimized process for improved reproducibility. In this 
study, the focus is on analysis of ellipsometric (ψ, Δ) spectra acquired by 
real time SE in order to characterize (i) the structural and compositional 
evolution in (In,Ga)2Se3 film growth from In, Ga, and Se fluxes in the first 
stage, (ii) the transition from Cu-poor to Cu-rich CIGS at the end of the 
second stage, which occurs under Cu and Se fluxes, and (iii) the transition 
from Cu-rich to the desired Cu-poor CIGS, which defines the end of the 
third and final stage, and occurs under a second application of In, Ga, and 
Se fluxes. After the transition from Cu-poor to Cu-rich material in the 
second stage, a Cu2-xSe phase near the surface of the bulk layer is tracked. 
In the Cu-rich to Cu-poor transition, this Cu2-xSe phase has fully reacted 
with In, Ga, and Se to form CIGS. Studies using a standard Mo substrate 
and 2 μm thick CIGS for solar cells have also revealed features in the (ψ, Δ) 
spectra characteristic of the anticipated changes in the near surface phase 
composition as established by detailed modeling on thinner and smoother 
films. Although careful analysis of real time SE is expected to provide 
quantitative information on the surface properties and their evolution in this 
case of solar cells, control of the deposition has been successful simply by 
monitoring real time changes in the ellipsometric (ψ,Δ) spectra. 

9:00am  EL+TF+AS+EM+SS+PS+EN+NM-MoM3  Contribution of 
Plasma Generated Nanoparticles to the Growth of Microcrystalline 
Silicon Deposited from SiF4/H2/Argon Gas Mixtures, J.-C. Dornstetter, 
S. Kasouit, J.-F. Besnier, Total S.a, France, P. Roca i Cabarrocas, LPICM-
CNRS, Ecole Polytechnique, France 
Despite the low fabrication cost of thin film silicon solar modules, this type 
of technology remains non competitive in main stream markets because of 
the high BOS costs, due to the low energy conversion efficiency of this type 
of modules (~10%).We have recently shown that microcrystalline silicon 
films deposited using SiF4/H2/Argon RF capacitive plasmas have excellent 
structural and transport properties, compared to films deposited using 
conventional SiH4/H2 mixtures, allowing for a very good carrier collection, 
even for thick cells, and Voc values of 0.55 V, without device optimization, 
thus opening up the path for the realization of high performance solar cells. 
However, little is known so far about the growth mechanism of this type of 
materials and the reason for such interesting properties.Studies of silicon 
thin films deposition from SiF4/H2 mixes, under conditions different from 
ours, suggested that the growth is due to the deposition of SiF2 radicals, 
followed by the abstraction of fluorine by hydrogen. Previous work within 
our group has also shown that deposition occurs only when particles are 
present in the plasma, and that growth starts from crystallites without any 
amorphous phase.We present here a systematic study of the growth of 

microcrystalline films, together with the composition of nanoparticles 
attracted by thermophoresis to cold traps located both on the walls of the 
plasma chamber and in the fore line as a function of deposition conditions. 
The composition of the deposit on the traps is found to be amorphous at low 
power/ low hydrogen conditions and becomes crystalline when either of 
them increases. This correlates well with an increase in atomic hydrogen 
concentration in the plasma, as estimated by actinometry. The crystalline 
fraction of the deposited film was measured using in-situ ellipsometry and 
was found to correlate with the composition of the deposit on the cold traps. 
Deposition rate is drastically reduced when a water cooled trap is installed 
on the walls of the plasma chamber, and switches off at high H2 flow rates. 
Under these conditions, TEM and AFM images, show that at the initial 
stages of the growth the film is constituted of sparse, hexagonal crystalline 
particles, having sizes on the order of few tens of nanometers. We interpret 
the data above as a result of plasma-generated nanocrystals being a 
significant contribution to the deposited film. This may explain the 
excellent electronic properties of the films, as the particles are formed in the 
bulk of the plasma region, free from energetic ions bombardment. We will 
correlate the structural properties and the film growth mechanisms to the 
properties of solar cells. 

9:20am  EL+TF+AS+EM+SS+PS+EN+NM-MoM4  Multichannel 
Spectroscopic Ellipsometry for CdTe Photovoltaics: from Materials 
and Interfaces to Full-Scale Modules, P. Koirala, J. Chen, X. Tan, N.J. 
Podraza, The University of Toledo, S. Marsillac, Old Dominion University, 
R.W. Collins, The University of Toledo 
Real time spectroscopic ellipsometry (RTSE) has been implemented in 
studies of the evolution of the semiconductor structural and optical 
properties during sputter deposition of thin film polycrystalline CdS/CdTe 
solar cells on transparent conducting oxide (TCO) coated glass substrates. 
Analysis of the real time optical spectra collected during CdS/CdTe 
deposition requires an optical property database as a function of 
measurement temperature for all substrate components. These include not 
only soda lime glass, but also an SiO2 layer and three different SnO2 layers. 
We report optical functions parameterized versus temperature for the glass 
substrate and its overlayers starting from room temperature and ending at 
elevated temperature above which the semiconductor layers are deposited. 
In fact, such a database has additional applications for on-line, through-the-
glass monitoring applications of coated glass at elevated temperature. In the 
RTSE studies, knowledge of the temperature dependent optical functions of 
the substrate components enables an accurate substrate temperature 
determination before the onset of deposition and is critical for accurate 
extraction of the semiconductor layer optical properties. We implement 
RTSE to study the filling process of the surface roughness modulations on 
the top-most SnO2 substrate layer and modification of the optical properties 
of this layer. This modification is further studied post-deposition by infrared 
spectroscopic ellipsometry. In addition to providing information on 
interface formation to the substrate during film growth, RTSE also provides 
information on the bulk layer CdS growth, its surface roughness evolution, 
as well as overlying CdTe interface formation and bulk layer growth. 
Information from RTSE at a single point during solar cell stack deposition 
assists in the development of a model that can be used for mapping the 
completed cell stack properties, which can then be correlated with device 
performance. Independent non-uniformities in the layers over the full area 
of the cell stack enable optimization of cell performance combinatorially.  

9:40am  EL+TF+AS+EM+SS+PS+EN+NM-MoM5  Determination of 
Electronic Band Gaps from Optical Spectra, R.A. Synowicki, J.A. 
Woollam Co., Inc. 
The band gap of a material Eg is defined theoretically as the lowest energy 
for electronic transition from the valence to conduction bands in a solid. For 
an ideal material free of defects this is the photon energy or wavelength 
where the optical properties change from transparent to absorbing. 
However, real materials contain defects which cause absorption to begin 
below the band gap (i.e. the Urbach Tail) making determination of the true 
band gap position difficult. For example, in a solar cell the measured 
absorption edge represents the onset of transitions first due to defects, then 
from band to band. Empirical methods used to determine the band gap in 
real materials with defects include the Tauc plot and the Mott-Davis plot. 
More theoretical mathematical dispersion models such as the Tauc-Lorentz, 
Cody-Lorentz, and Herzinger-Johs models have been developed which 
include an adjustable band gap parameter. The various plots and dispersion 
model methods will be discussed and applied to different materials 
measured optically via spectroscopic ellipsometry, intensity transmission, 
reflection, absorption, or a combination of these methods. 
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10:00am  EL+TF+AS+EM+SS+PS+EN+NM-MoM6  Optical Modeling 
of Plasma-Deposited ZnO: Extended Drude and its Physical 
Interpretation, H.C.M. Knoops, M.V. Ponomarev, J.W. Weber, N. Leick, 
B.W.H. van de Loo, Y.G. Melese, W.M.M. Kessels, M. Creatore, Eindhoven 
University of Technology, the Netherlands 
High-quality transparent conductive oxides such as ZnO are important due 
to their electrical and optical properties. To improve these properties the 
responsible physical processes have to be understood. Traditionally, charge-
carrier-scattering processes are investigated by combining morphology data 
and Hall measurements. This contribution discusses the extensive optical 
modeling of plasma-deposited ZnO and how its interpretation directly 
provides insight into the relevant charge-carrier-scattering processes at 
different length scales. The interpretation is generalized to the concept of 
frequency-dependent resistivity, which is used to explain the applicability 
of different Drude models. 

Thin films (50-1000 nm) of Al-doped and undoped ZnO were deposited 
using an expanding thermal plasma MOCVD process.1 Conditions of high 
pressure and high diethyl zinc flow allowed for dense films with low 
electrical resistivities (e.g., 4×10-4 Ω cm at 300 nm). The films were 
analyzed with variable-angle spectroscopic ellipsometry (SE) (0.75 – 5.0 
eV), FTIR reflection spectroscopy (0.04 – 0.86 eV), Four-point-probe 
(FPP), and Hall measurements. 

The SE and FTIR data were combined and fitted with classical and 
extended Drude2 models. The high intensity of the Drude in the FTIR range 
resulted in a high sensitivity with which the carrier concentration and 
mobility could even be determined for thin (~40 nm) undoped ZnO films. 
An extended Drude model was needed to correctly model the SE energy 
range, which was explained by the dominance of ionized impurity scattering 
and a reduction of this scattering for higher photon energies. The grain-
boundary-scattering mobility could be determined by the difference 
between optical and Hall mobilities.3 When combined with FPP results, the 
effective mobility can be determined from these optical techniques without 
the use of Hall measurements. The optical response above the band gap was 
modeled by a PSEMI or Tauc-Lorentz oscillator model, where a broadening 
and shift of the transition was seen for increasing carrier concentration.4 

These insights and a generalized view of electron scattering in ZnO at 
different length scales will be presented. 

1. Ponomarev et al., J. Appl. Phys. Submitted (2012) 

2. Ehrmann and Reineke-Koch, Thin Solid Films 519, 1475 (2010) 

3. Steinhauser et al., Appl. Phys. Lett. 90, 142107 (2007) 

4. Fujiwara and Kondo, Phys. Rev. B 71, 075109 (2005) 

10:40am  EL+TF+AS+EM+SS+PS+EN+NM-MoM8  The Ellipsometric 
Response of Single-Crystal Silicon to Doping, H.G. Tompkins, 
Consultant 
The current wisdom is that for ellipsometry in the UV-vis-NIR spectral 
range, doping of single-crystal silicon can be ignored. We study the 
ellipsometric response of silicon doped with arsenic at various levels. We 
also studied the response after implant (before activation) and after the 
activation (anneal). We find that for samples implanted with 1E18 
atoms/cm3, the single-crystal silicon was not amorphized. Implants of 2E19 
atoms/cm3 and higher left an amorphous layer on the surface of the wafer 
the thickness of which was about the depth of the implant. Activation of the 
sample implanted with 2E19 atoms/cm3 returned the sample to single-
crystal silicon and the ellipsometric response in the UV-vis-near_IR is 
essentially that of undoped silicon. However, the response in the mid-IR is 
that the extinction coefficient is no longer zero. For samples implanted with 
2.5E20 atoms/cm3 and greater, annealing did not return the UV-vis-near_IR 
ellipsometric response to that of single-crystal silicon. Although this 
amount of other material (arsenic) is still less that about one tenth of one 
percent, our conjecture is that the microstructure simply could not be 
returned to that of a single crystal. As with the lower doped sample, the 
mid-IR spectral region showed significant increase in the extinction 
coefficient. 

11:00am  EL+TF+AS+EM+SS+PS+EN+NM-MoM9  The Effect of 
Stress on the Optical Properties Semiconductor Films, A.C. Diebold, 
G.R. Muthinti, M. Medikonda, T.N. Adam, College of Nanoscale Science 
and Engineering, University at Albany, A. Reznicek, B. Doris, IBM 
Research at Albany Nanotech 
Here we review the impact of stress on the complex dielectric function of 
semiconductor films measured using spectroscopic ellipsometry. Two 
relevant examples of stressed semiconductor layers are pseudomorphic 
epitaxial layers fabricated during semiconductor manufacturing and strained 
silicon on insulator (sSOI) wafers. Stress is known to shift the energies of 
direct gap critical point transitions in semiconductors. The biaxial stress in 
pseudomorphic films grown on silicon wafers can be as high as that used 
during opto-elastic studies of bulk semiconductors. The amount of stress in 

un-relaxed, pseudomorphic films of Si1-xGex on Si (100) reaches 1 GPa for 
alloys with 20% Ge and is more than 3 GPa for films with > 50% Ge. The 
bi-axial stress in sSOI is typically ~1 GPa. An elastic theory approach for 
the effect of strain on the k*p determined band structure and optical 
transition energy is well known. Both low shear stress and high shear stress 
approximations can apply to the shift in transition energy depending on the 
magnitude of the spin orbit splitting energy vs the magnitude of the shear 
stress. Until recently it was difficult to obtain sets of samples that test both 
approximations. Here we discuss results from our recent study of 
pseudomorphic films of Si1-xGex on Si (100) from x= 0.05 to 0.75 which 
covers both low and high shear regimes. We also present our recent study of 
the dielectric function of thinned sSOI which illustrates the impact of stress 
on the optical transitions for the Si layer on sSOI. All of these samples are 
examples of new materials being used in semiconductor research. The 
results of this study are directly transferred into cleanroom spectroscopic 
ellipsometry systems used for process control during manufacturing. 

11:20am  EL+TF+AS+EM+SS+PS+EN+NM-MoM10  Numerical 
Ellipsometry: Spectroscopic n-k Plane Analysis of Thin Films Growing 
on Unknown Layered Substrates, F.K. Urban, D. Barton, Florida 
International University 
Spectroscopic ellipsometry measurements on thin films commonly make 
use of prior knowledge of the structure and optical properties of the 
underlying substrate. However, imprecision in substrate statistics 
propagates into the solution for the film of interest. Thus it is more accurate 
to have a method for solving for film properties which simultaneously 
obtains whatever is needed about the substrate. And it makes solutions 
possible whether or not book data or previous substrate solutions are 
available. In this work we apply Complex Analysis in the n-k plane to 
achieve solutions employing the well-know reflection equations. The 
method is carried out at each measured wavelength and does not necessitate 
an a-priori assumption of optical property dependencies on wavelength. 
The mean square error has been improved by many orders of magnitude, a 
selected limit of 10-14 as opposed to 1 to 30 or so for least squares. Thus the 
full accuracy of the ellipsometer is now available for more accurate 
measurements of film thickness and optical properties. The method requires 
six measurements during growth. The first is used to determine the 
relationship between Rp and Rs at the film-substrate interface. The 
following four are used to uniquely determine the values of Rp, Rs, and film 
n, k, and d. The final measurement confirms the unique solution. Suitability 
of the model is tested by comparing measurements at two of more 
wavelengths for self consistency. Results for n and k of the growing film 
are examined across the measurement spectrum in comparison with 
parameterizations in common use. 
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Spectroscopic Ellipsometry Focus Topic 
Room: 19 - Session EL+TF+BI+AS+EM+SS-MoA 

Spectroscopic Ellipsometry: From Organic and 
Biological Systems to Inorganic Thin Films 
Moderator: M.S. Wagner, The Procter & Gamble Company 

2:00pm  EL+TF+BI+AS+EM+SS-MoA1  Biochemical Optical Sensors 
Based on Highly-Ordered Slanted Columnar Thin Films, D. Schmidt, 
K.B. Rodenhausen, University of Nebraska-Lincoln, J. VanDerslice, T.E. 
Tiwald, J.A. Woollam Co., Inc., E. Schubert, M. Schubert, University of 
Nebraska-Lincoln 
Highly-ordered three-dimensional nanostructure thin films offer 
substantially increased surface area for attachment of organic layers, and in 
addition, new detection principles due to the physical properties of the 
nanostructures. For example, upon material attachment the optical 
birefringence of the nanostructures changes due to screening of polarization 
charges. Because of these advantages, highly-ordered three-dimensional 
nanostructure thin films lend themselves as suitable candidates for studying 
of organic attachments as well as for low-cost humidity sensing, for 
example. 

We utilize glancing angle electron-beam deposition for fabrication of highly 
spatially coherent metal slanted columnar thin films. Subsequently, the 
nanostructures may be further functionalized with thin conformal coatings 
by means of atomic layer deposition. The ellipsometry model analysis and 
resulting anisotropic optical properties of hybrid metal slanted columnar 
thin films determined by generalized spectroscopic ellipsometry in the 
visible and near-infrared spectral region will be discussed. We will be 
reviewing research in this area and report in particular on in-situ monitoring 
of organic attachments using ellipsometry combined with quartz crystal 
microbalance with dissipation. Exemplarily, we discuss studies of 
fibronectin protein adsorption, octanethiol chemisorption (self-assembled 
monolayer growth) on platinum coated titanium slanted columnar thin films 
as well as relative humidity sensing. 

2:20pm  EL+TF+BI+AS+EM+SS-MoA2  Studies of Optical Properties 
of Hybrid J-aggregates and Nanocrystal Quantum Dots Layers for 
Photonic Applications, K. Roodenko, H.M. Nguyen, L. Caillard, A. Radja, 
O. Seitz, Yu.N. Gartstein, A.V. Malko, Y.J. Chabal, The University of Texas 
at Dallas 
The integration of organic materials and inorganic nanocrystal quantum 
dots (NQDs) on the nanoscale offers the possibility of developing new 
photonic devices that utilize the concept of resonant energy transfer 
between an organic material and NQDs. Electromagnetic coupling that 
takes place between excitons—bound electron–hole pairs—at the interfaces 
of the hybrid composite can be utilized for light-emitting, photovoltaic and 
sensor applications.  

As the key ingredients for the nanocomposite material system reported in 
this work are the J-aggregates (JA, dye self-assembled molecules) that have 
exceptional optical absorption due to their strong oscillator strength. NQDs 
on the other hand combine a variety of important properties, such as high 
quantum yields, excellent photo- and chemical stability, and size dependent, 
tunable absorption and emission. Excitation energy transfer in NQDs / J-
aggregate hybrids is characterized by their strong excitonic transitions at 
room temperature with spectrally well-defined absorption and emission. 

In order to understand the energy transfer mechanisms in such complex 
systems, optical properties of JA and NQDs/JA hybrid systems were 
characterized by means of spectroscopic ellipsometry and polarized IR 
spectroscopy. 

Spectroscopic ellipsometry in 0.6-5 eV spectral range was employed to 
study optical properties of J-aggregates drop-casted on silicon surfaces. 
Thin JA films were found to exhibit strong optical anisotropy due to the 
specific molecular orientation of thin layers on Si substrates. Variation of 
optical properties due to the deposition of nanocrystal quantum dots 
(NQDs) was systematically studied for applications in new photonic devices 
that utilize excitonic energy transfer from NQDs to JA layer. Ellipsometric 
results were cross-referenced with atomic force microscopy (AFM) data to 
derive a quantitative understanding of the distribution of NQDs upon 
deposition on JA layer. Integration of hybrid colloidal NQD/JA structures 
could be potentially attractive for a range of optoelectronic applications. 

2:40pm  EL+TF+BI+AS+EM+SS-MoA3  Love and Death, the Story of 
Most Proteins and Most Surfaces as Told by Spectroscopic 
Ellipsometry, T. Benavidez, K. Chumbuni-Torres, J.L. Felhofer, C.D. 
Garcia, The University of Texas at San Antonio INVITED 
Biosensors are analytical platforms that integrate a biological recognition 
element with a signal transducer. Because they have the potential to provide 
rapid, real-time, and accurate results, biosensors have become powerful 
tools in clinical and biochemical settings. Our group is particularly 
interested in the development of electrochemical biosensors based on 
enzymes adsorbed to nanomaterials. When integrated to microfluidic 
devices, these sensors offer sensitivity, portability, low cost, and the 
possibility of analyzing turbid samples. Adsorption was selected to 
immobilize the biorecognition element because it is one of the simplest and 
most benign methods, avoiding cross-linking reactions or additional 
components (such as entrapping polymers). Most importantly, as adsorption 
is a required (and sometimes limiting) step for any immobilization 
mechanism, the identification of key variables influencing this process can 
be applied to a variety of strategies. Although several techniques have been 
used to study the adsorption of proteins to nanomaterials,1 only a few of 
them provide information about the kinetics of the process in real time. This 
is a critical aspect, as most of the post-adsorption conformational changes 
occur within a few minutes after the interaction.2 Among those, 
reflectometry was used by our group to perform the first kinetic study 
related to the interaction of proteins with carbon nanotubes.3 These kinetic 
studies have been recently extended to the interaction of enzymes (D-amino 
acid oxidase,4 catalase,5 and glucose oxidase6) by variable angle 
spectroscopic ellipsometry, which enabled a more thorough analysis of the 
interaction process with a much more versatile experimental design.7,8 The 
use of VASE demonstrated that a number of variables, (being the amount of 
enzyme only one of them) can influence the biological activity of proteins 
adsorbed to the substrate. Furthermore, our results indicate that that the 
activity of enzymes adsorbed to nanomaterials can be directly related to the 
kinetics of the adsorption process (dG/dt).5 

Please see supplemental document for figures and footnotes. 

3:40pm  EL+TF+BI+AS+EM+SS-MoA6  Detailed Photoresist and 
Photoresist Processing Studies using Spectroscopic Ellipsometry, C. 
Henderson, Georgia Institute of Technology INVITED 
Spectroscopic ellipsometry has become an invaluable tool for the study of a 
wide variety of thin film systems. In particular, it has become extremely 
valuable in the development and study of advanced photoresists and of 
lithographic processes used in the production of integrated circuits and 
other related semiconductor devices. In our work, we have used 
spectroscopic ellipsometry to study a variety of problems related to 
photoresists including swelling phenomena, exposure induced refractive 
index changes, and ultra-fast dissolution phenomena. We have combined 
spectroscopic ellipsometry with quartz crystal microbalance techniques to 
simultaneously study thin film optical properties, thickness, film mass, and 
film modulus. Such techniques have been particularly useful in 
understanding the dissolution properties of polymeric photoresists 
developed for 193 nm lithography. This talk will review some of the 
applications for spectroscopic ellipsometry in this field and in particular 
will highlight some of the results of our work made possible using 
spectroscopic ellipsometry. 

4:20pm  EL+TF+BI+AS+EM+SS-MoA8  Ellipsometric 
Characterization of a Thin Titaniumoxide Nanosheets Layer, H. 
Wormeester, G. Maidecchi, S. Kumar, A. Kumar, A. ten Elshof, H.J.W. 
Zandvliet, MESA+ Institute for Nanotechnology, University of Twente, The 
Netherlands 
The photochemical properties of titaniumoxide make this a widely studied 
material. Of special interest is a thin nanostructured layer of such a material. 
A variety of a nanostructured material is the single sheet titaniumoxide that 
can be obtained by delaminating a layered titanate, with stochiometry Ti1-

xO2
-4x (x=0.0875). The slight titanium deficiency leads to a negatively 

charged nanosheet that can be used as a building block in a layer by layer 
assembled composite film [1]. In this work we used Langmuir Blodget to 
deposit succesive thin layers of nanosheets. The electronic properties of 
these layers were investigated with ellipsometry and Scanning Tunneling 
Microscopy (STM). The optical spectra show the well known absoprtion 
peak at 4.6 eV for titaniumoxide nanosheets. The optical spectra can be well 
modeled with a Cody-Lorentz dielectric function profile providing a 
bandgap of … eV, a value also found from STM IV spectroscopy. The 
Cody-Lorentz profile also indicates a slight below band gap light absorption 
by the nanosheet material. 
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[1] T. Sasaki, Y. Ebina, T. Tanaka, M. Harada, M. Watanabe and G. 
Decher, Chem. Mater. 2001, 13, 4661 

4:40pm  EL+TF+BI+AS+EM+SS-MoA9  Preparation of Abrupt 
LaAlO3 Surfaces Monitored by Spectroscopic Ellipsometry, C.M. 
Nelson, M. Spies, L.S. Abdallah, S. Zollner, Y. Xu, H. Luo, New Mexico 
State University 
LaAlO3 is a polar perovskite oxide, used as a single-crystal substrate in 
oxide epitaxy. It has created much interest for novel electronic applications, 
because a two-dimensional electron gas is formed at LaAlO3/SrTiO3 
heterostructures. The purpose of our work is twofold: First, we are 
interested in an accurate determination of the complex refractive index of 
LaAlO3 at room temperature. Second, we studied the impact of various 
cleaning methods on the abruptness of the LaAlO3surface. 

We obtained a commercial single-side polished LaAlO3substrate with 2-
inch diameter and a (100) pseudo-cubic surface orientation.The surface was 
polished with an rms roughness below 0.8 nm. We determined the 
ellipsometric angles ψ and Δ for LaAlO3 at 300 K from 0.7 to 6.5 eV. For a 
bulk insulator with a clean smooth surface, the phase change Δ should be 
zero or π below the band gap. In practice, this never happens, because 
surfaces are covered with overlayers (adsorbed organic or water vapors). 
Surface roughness has a similar effect on the ellipsometric spectra as a 
surface overlayer. Even for an abrupt bulk/air interface, there is a thin 
(~0.5nm) transition region where the electron wave functions leak from the 
crystal into the ambient. For the as-received sample, the data were described 
with a Tauc-Lorentz model for LaAlO3, plus 2.1 nm of surface layer 
thickness (described as an effective medium with 50% density of the bulk). 
After ultrasonic cleaning in acetone, the overlayer thickness decreased to 
1.8nm. Next, we mounted the wafer in a UHV cryostat, pumped down to 
below 10-8Torr, and acquired an ellipsometric spectrum at 70°. The surface 
layer thickness was reduced to 1.2 nm, presumably because a part of the 
adsorbed surface layer (especially water) desorbed under vacuum.  

So far, everything worked as expected, but here it gets interesting: We 
heated the sample to 700 K for about an hour to desorb the remaining 
surface overlayer. After cooling down to 300 K, we measured the 
ellipsometric angles again at 70° angle of incidence from 0.7 to 6.5 eV. The 
ellipsometric angle Δ at 2 eV was reduced to below 0.2°, consistent with a 
surface layer thickness of less than 1 Å, much less than the surface 
roughness specified by the supplier (8 Å). 

In conclusion, a macroscopically smooth and clean LaAlO3surface was 
prepared by ultrasonic cleaning of the wafer in acetone, followed by heating 
in UHV to 700 K. The resulting surface layer thickness was below 1 Å, as 
measured by spectroscopic ellipsometry. We will report Tauc Lorentz 
parameters. We will also describe the temperature dependence of the 
LaAlO3dielectric function from 77 to 700 K. This work was supported by 
NSF (DMR-11104934). 

5:00pm  EL+TF+BI+AS+EM+SS-MoA10  Determination of the 
Refractive Index of a Gold-Oxide Thin Film Using X-Ray 
Photoelectron Spectroscopy and Spectroscopic Ellipsometry, K. Cook, 
G.S. Ferguson, Lehigh University 
A two-step procedure will be presented for measuring the complex 
refractive index of an electrochemically produced oxide film on a gold 
surface. In the first step, the composition and the thickness of the oxide film 
were determined using angle-resolved X-ray photoelectron spectroscopy. 
The experimental composition defined the system, thereby avoiding 
assumptions about the film stoichiometry that would otherwise be required. 
The value of thickness derived from these measurements was then used to 
calculate n and k from ellipsometric data collected across the visible 
spectrum (350 - 800 nm).  
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EL+TF+AS+EM+SS-TuP1  Ellipsometric Characterization of Iron 
Pyrite (FeS2) and Samarium Sesquisulfide (Sm2S3) Thin Films, A. 
Sarkar, N.J. Ianno, University of Nebraska-Lincoln, J.R. Brewer, Rare 
Earth Solar 
Iron pyrite (FeS2) and samarium sesquisulfide (Sm2S3) are transition metal 
chalcogenides characterized as absorbing semiconductors with bandgaps of 
0.95 eV and 1.8 eV respectively. Synthesis of both n-type and p-type 
samples have been reported in the form of single crystals and thin films for 
both materials. As a result of these properties they have received 
considerable interest as photovoltaic absorber materials. We present the 
characterization of FeS2 and Sm2S3 thin films using spectroscopic 
ellipsometry. FeS2 thin films were synthesized by sulfurizing DC magnetron 
sputtered iron films and reactive ion sputtered iron (III) oxide films in H2S / 
Ar atmosphere. Sm2S3 thin films were synthesized by reactive ion sputtering 
of Sm in an H2S / Ar atmosphere. This analysis gives the optical properties 
of chalcogenide films from near-UV (300 nm) to the mid-IR (20 μm). This 
can then be correlated to the structural and electronic properties as well. The 
analysis is corroborated with results obtained from Raman spectroscopy, 
scanning electron microscopy, profilometry, X-ray diffraction (XRD), and 
Van der Pauw measurements. The ellipsometric results can be used to 
access different processing methods for synthesizing FeS2 and Sm2S3, to 
determine the presence of different phases and intermediate products. This 
work will lay the foundation for employing in situ ellipsometry as a process 
monitor and quality control tool during manufacture of earth abundant 
chalcogenide thin films. 

EL+TF+AS+EM+SS-TuP2  Temperature Dependence of the Dielectric 
Function of Germanium by Spectroscopic Ellipsometry, A.A. Medina, 
L.S. Abdallah, S. Zollner, New Mexico State University 
Germanium has important applications in photovoltaics as a substrate for 
III/V triple-junction solar cells, especially in space vehicles and for 
terrestrial concentrator-based applications. Unfortunately, the optical 
properties of germanium (complex refractive index and absorption 
coefficient) and their temperature dependence (important to consider the 
effects of the space environment or the radiation-induced heating in 
concentrators) are not as well known as for silicon, which limits the 
accuracy of modeling for solar cells and Ge-based optical interconnects. In 
this work, we report precision measurements of the complex refractive 
index of germanium from 0.5 to 6.6 eV at room temperature using variable-
angle spectroscopic ellipsometry. To improve accuracy, especially at 
photon energies below 2 eV, we used a Berek waveplate compensator. By 
cleaning a commercial Ge wafer in isopropanol followed by deionized 
water, we were able to reduce the native oxide thickness to 1.3 nm. Heating 
the wafer in UHV at 700 K did not reduce the oxide thickness further. (The 
oxide thickness can be determined with precision measurements of Δ below 
the band gap on a single-side polished wafer.) From the ellipsometric angles 
of the Ge wafer measured at three angles of incidence (65, 70, and 75° ), we 
calculated the dielectric function from 0.5 to 6.6 eV, by correcting for the 
effects of a native oxide.  

Mounting our wafer in a compact UHV cryostat allowed temperature-
dependent measurements from 80 to 700 K at 70° angle of incidence. Using 
similar methods as described above, we determined the dielectric function 
at different temperatures. We also determined the critical-point parameters 
(amplitude, energy, phase angle, and broadening) of the E0, E1, E1+Δ1, E0’, 
and E2 critical points as a function of temperature. To separate the non-
resonant contributions from the critical-point line shapes, we calculated the 
second derivative of the dielectric function with respect to photon energy 
and fitted the result to analytical line shapes with two-dimensional critical 
points. In general, our results are in good agreement with those of Viña et 
al. However, our results cover a wider spectral range and are more accurate 
because of the use of a compensator. Work is in progress to form thermal 
oxides on Ge wafers by annealing in oxygen, which will allow a multi-
wafer analysis for Ge similar to work on Si by Herzinger et al. 

This work was supported by NSF (HRD-0803171 and DMR-11104934) and 
the New Mexico Louis Stokes Alliance for Minority Participation. 

Reference: L. Viña, S. Logothetidis, M. Cardona Phys. Rev. B 30, 1979 
(1984). 
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