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8:00am  TF+NS+EM-ThM1  Plasma-enhanced Atomic Layer Epitaxy 
of AlN Films on GaN, N. Nepal, J.K. Hite, N. Mahadik, M.A. Mastro, C.R. 
Eddy, Jr., U.S. Naval Research Laboratory 
AlN and its alloys with GaN and InN are of great interest for number of 
applications. In a device structure that employes an ultrathin layer of these 
materials, thickness control at the atomic scale is essential. Atomic layer 
epitaxy (ALE) is one of the most promising growth methods for control of 
epilayer thickness at the atomic scale. There are reports on atomic layer 
deposition of AlN on GaN and Si substrates [1]. In those reports, the AlN 
layers were either amorphous or composed of nm-sized crystallites. Since 
ALE is a low temperature growth process, there is significantly reduced 
thermal energy for adatoms to bond at preferred lattice sites and promote 
growth of crystalline material, therefore, surface preparation plays a very 
important role to ensure a crystalline layer. 

In this work, we present recent efforts to improve the crystalline quality of 
ALE AlN layers on MOCVD grown GaN/sapphire templates, including the 
influence of ex situ and in situ surface pretreatments to promote uniform 
two-dimensional (2D) nucleation of AlN layers and ALE growth of 
crystalline AlN films thereupon. AlN layers were grown at 500°C by ALE 
simultaneously on Si(111) and GaN/sapphire templates and characterized 
using spectroscopic ellipsometery (SE), x-ray diffraction (XRD), and 
atomic force microscopy measurements. The SE measurements indicate that 
the AlN growth on Si(111) is self-limited for trimethyaluminum (TMA) 
pulse of length 0.04 to 0.06 sec. However, the AlN nucleation has a bimodal 
island size distribution for TMA pulses < 0.06 sec. The AlN nucleation 
becomes uniform and 2D for a pulse length of 0.06 sec, therefore, this pulse 
length was used to study the GaN surface pretreatment on the nucleation of 
AlN layer. GaN surfaces were pre-treated ex situ with HF and HCl wet 
chemical etches. Alternating pulses of trimethylgallium and hydrogen 
plasma followed by an hour of annealing at 500°C (emulating a Ga-flash-off 
process) were employed in situ before growing an AlN layer. For 3 cycles 
of Ga-flash-off the AlN nucleation is uniform and replicates the GaN 
surface morphology on both HF and HCl pretreated GaN. XRD 
measurements on 36 nm thick AlN films reveal that the ALE AlN on 
GaN/sapphire is crystalline with only a wurtize structure and a (0002) peak 
rocking curve FWHM of 630 arc-sec, which is close to the typical value for 
AlN grown by MBE and MOCVD [2,3]. Electrical characterization of 2D 
electron gas at the AlN/GaN interface will also be presented. 

References: 

1. M. Alevli et al., Phys. Status SolidiA 209, 266 (2012), and references 
therein. 

2. T. Koyama et al., Phys. Stat. Sol. (a) 203, 1603 (2006). 

3. K. Balakrishnan et al., Phys. Stat. Sol. (c) 3, 1392 (2006). 

8:20am  TF+NS+EM-ThM2  In Situ Infrared Spectroscopy Study of 
Cobalt Silicide Thin Film Growth by Atomic Layer Deposition, K. 
Bernal Ramos, University of Texas at Dallas, M.J. Saly, SAFC Hitech, J. 
Kwon, University of Texas at Dallas, M.D. Halls, Materials Design Inc., 
R.K. Kanjolia, SAFC Hitech, Y.J. Chabal, University of Texas at Dallas 
Cobalt silicide has potential applications in microelectronics. For instance, 
the drive to scale down integrated circuitry (IC) has led to the consideration 
of cobalt silicide (CoSi2) as an alternative contact material for titanium 
silicide (TiSi2) in future self-aligned silicide technology due to its wider 
silicidation window and superior thermal and chemical stability. Studies of 
the growth mechanisms during film deposition are critical to better 
understand and control thin film formation. 

This work focuses on the atomic layer deposition (ALD) of cobalt silicide 
(CoSi2), using (tertiarybutylallyl)cobalttricarbonyl ((tBuAllyl)Co(CO)3) 
and trisilane on H-terminated silicon to uncover the film growth 
mechanisms. The first pulse of (tBuAllyl)Co(CO)3 reacts completely with 
the H-terminated Si surface forming one monolayer of metallic silicide 
through the reduction of the allyl ligand by transfer of the surface hydrogen 
and the formation of Co-Si bonds1. In situ infrared absorption spectra show 
the complete loss of H–Si bonds, and the appearance of surface-bound 
carbonyl and CHx ligands after the first (tBuAllyl)Co(CO)3 pulse on 
H/Si(111). Further deposition of CoSi2 is possible only after the linear 

carbonyl groups (initially observed, on the surface after the first 
(tBuAllyl)Co(CO)3) are removed by subsequent ALD cycles. Further ALD 
cycles give rise to cobalt silicide growth through ligand exchange after a 
nucleation period of 2–4 cycles. The resultant CoSi2 films are characterized 
by a low concentration of carbon impurities in the bulk according to X-ray 
photoemission spectroscopy (XPS). 

  

1 Kwon et al. Chem. Mater. 2012, 24, 1025−1030 

8:40am  TF+NS+EM-ThM3  Thin Film Growth: From Gas Phase to 
Solid Phase – Links and Control, P. Raynaud, CNRS and University Paul 
Sabatier – Toulouse – France INVITED 
PECVD, PVD, ALD, sputtering processes, are widely used for thin film 
growth.Nevertheless, the growth mechanisms need to be controlled and 
understood to be able to propose stable, adaptable and reproducible 
processes.Gas, plasma or ”volume” phase is one parameter; interaction with 
surfaces to be treated is the second one, the last one being the final property 
(ies) to be reached.The Gas phase is controlled by external parameters 
(pressure, power, polarization, temperature, gas mixture, type of power 
supply in plasma processes, type of target, duty cycle,). Moreover, these 
external parameters are linked to internal parameters such as: density and 
energy of species, type of species (neutrals, ions, electrons, radicals, 
photons …), temperature, bombardment energy…Thus, interaction with 
surfaces and growth process (growth mode, growth rate…) are obviously 
controlled by these internal parameters and the couple “Gas phase/surface 
(nature of substrate)”.The purpose of this talk is to explain through 
examples (In situ Infrared spectroscopy of gas phase, OES, MS, Growth 
modes characterization by in situ ellipsometry, RBS, ARXPS…) how to 
characterize (in or ex situ) the gas phase et solid phase to find links between 
these two phases and give some explanation of the processes “from power 
supply to final properties of the layer”. 

9:20am  TF+NS+EM-ThM5  Investigation of Precursor Infiltration and 
ALD Growth on Polymers and Effect on Fiber Mechanical Properties, 
R.P. Padbury, J.S. Jur, North Carolina State University 
Atomic layer deposition (ALD) provides the opportunity to unite the 
properties of organic fiber forming polymers and nanoscale inorganic films 
creating a hybrid material interface. Prior research has shown that ALD 
materials nucleation on polymers varies in composition and structure based 
on how the precursor interacts with the polymer chemistry and the process 
conditions. The purpose of this work is to explore the effect of this 
processing on the mechanical behavior of fibrous materials. To study this in 
more detail, in-situ quartz crystal microgravimetry (QCM) is employed to 
understand the material growth mechanisms of ALD TiO2, ZnO, and Al2O3 
on poly (acrylic acid), polyamide-6, and polyethylene terephthalate. 
Particular emphasis is placed on controlling the ALD precursor diffusion 
into the sub-surface region of these polymers. In-situ QCM data was 
complemented by ex-situ characterization methods such as FT-IR and TEM 
to examine the interaction between the precursor and polymer and the 
compositions of the inorganic films. Finally, these results are correlated to 
the mechanical performance of the ALD treated fabrics. This work has 
important implications on sustainable textiles processes as well as the 
introduction of hybrid material properties to textile systems. 

9:40am  TF+NS+EM-ThM6  Atomic Layer Deposition Enabled 
Synthesis of Nanostructured Composite BiFeO3/CoFe2O4 Thin Films 
for Multiferroic Applications, C.D. Pham, J.P. Chang, University of 
California at Los Angeles 
Multiferroic materials, that can either exist as single-phase materials or 
multi-phase composites, exhibit two or more forms of ferroic order such as 
(anti)ferroelectricity, (anti)ferromagnetism, or ferroelasticity and have been 
proposed for use in future non-volatile memory technology. Atomic layer 
deposition (ALD) is proposed as a scalable approach to synthesize 
multiferroic thin films and to enable the synthesis of multiferroic 
composites which utilize conformal deposition onto 3-D nanostructures. 
Challenges that must be overcome in the ALD of multiferroic materials is 
the amorphous nature of as-deposited films and the difficulty in attaining 
the desired crystallinity and structure that would enable multiferroic 
properties to emerge from these materials. 

In this work, multiferroic BiFeO3 was deposited by ALD as a single-phase 
multiferroic thin film as well as the ferroelectric component in a composite 
multiferroic using a ferrimagnetic CoFe2O4 mesoporous template that was 
synthesized using an evaporation induced di-block copolymer self-assembly 
technique. The ALD process used the metallorganic precursors Bi(tmhd)3 
(tmhd = 2,2,6,6-tetramethylheptane-3,5 dione) and Fe(tmhd)3 alongside 
oxygen atoms produced from a coaxial waveguide microwave powered 
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atomic beam source. A variety of ALD process conditions were studied, 
such as the effects of process temperature, precursor pulsing time, and 
precursor pulsing ratio on film composition, growth rate, and 
crystallization. The ALD films were able to be grown with a composition 
ratio Bi:Fe close to unity and with a controlled nanostructure and growth 
rate of ~0.7 Å/cycle. In order to achieve the desired crystalline material 
after rapid thermal processing, the composition and nanostructure of the as-
deposited films must first be controlled via the ALD process to fit within 
narrow windows. 

To compare the performance of the multiferroic ALD films to more well 
established synthesis methods, measurements of magnetic and 
ferro/piezoelectric properties were accomplished using SQUID 
magnetometry and piezoresponse force microscopy, respectively. Magnetic 
measurements showed that the out-of-plane remnant magnetization of a 
composite film at room temperature was approximately 66.4 emu/cm3 while 
the coercive field was approximately 1950 Oe which was comparable to 
epitaxial films grown by other methods such as PLD. The magnetoelectric 
coupling effects in the composite films were studied to assess the 
effectiveness of the nanostructured material approach.  

10:40am  TF+NS+EM-ThM9  In Situ Infrared Spectroscopic Study of 
Atomic Layer Deposited TiO2 Thin Film Formation Using Non-
Aqueous Routes, K. Bernal Ramos, University of Texas at Dallas, G. 
Clavel, Université Montpellier 2, France, C. Marichy, Universidade de 
Aveiro / CICECO, Portugal, W. Cabrera, The University of Texas at 
Dallas, N. Pinna, Universidade de Aveiro / CICECO, Portugal, Y.J. Chabal, 
University of Texas at Dallas 
Atomic layer deposition (ALD) is a unique technique for the deposition of 
conformal and homogenous thin films, by the use of successive self-limited 
surface reactions. Non-aqueous sol-gel routes are elegant approaches for the 
synthesis of metal oxide nanomaterials.1 High quality inorganic 
nanocrystals,1 ordered hybrid materials2 or ALD thin films3 can be obtained. 

Our ALD approach makes use of metal alkoxides and carboxylic acids as 
metal and oxygen source, respectively.4 It is expected that the reaction of 
carboxylic acids with the surface alkoxide species leads to surface 
carboxylate species (eq. 1), in a second step an aprotic condensation 
reaction between surface carboxylate species and metal alkoxides leads to 
metal-oxide bond formation (eq. 2). 

≡M-OR’ + RCOOH → ≡M-OOCR + R’OH  

≡M-OOCR + M-OR’ → ≡M-O-M≡ + RCOOR’  

Characterization of interface properties by in situ investigation of surface 
reaction mechanisms during deposition of high-k materials provides critical 
information for the development of semiconductor devices, where sharp 
interfaces and impurity free films are sought after.  

In this work, in-situ IR spectroscopy is used to investigate the mechanisms 
for TiO2 growth using either acetic acid or O3 as oxygen source and 
titanium isopropoxide as metal source. It is believed to avoid intermediate 
OH group and to lead to sharp Si-high-k interfaces.  

The IR results of the acetic acid process show clearly a ligand exchange 
leading to formation of acetates at the surface (vibrational bands at 1527 
and 1440 cm-1)during the acetic acid pulse and then to their removal during 
the metal alkoxide pulse. These finding confirm the expected mechanism 
and demonstrate the absence of OH intermediate. However, the ligand 
exchange does not seem to be complete leading to accumulation of C 
impurities. 

The in-situ study of O3 based ALD demonstrates similarities with the above 
process. Indeed, formation of formate, carboxylate or carbonate species are 
observed function of the O3 flow.5 The formation of surface carboxylic 
species upon reaction with O3 leads then to similar surface states as in the 
case of the reaction with carboxylic acids.4 The mechanism of both 
approaches and their similarities and differences will be discussed.  

1. N. Pinna and M. Niederberger, Angew. Chem.-Int. Edit., 2008, 47, 5292-
5304 

2. N. Pinna, J. Mater. Chem., 2007, 17, 2769-2774 

3. G. Clavel, E. Rauwel, M. G. Willinger and N. Pinna, J. Mater. Chem., 
2009, 19, 454-462 

4. E. Rauwel, G. Clavel, M. G. Willinger, P. Rauwel and N. Pinna, Angew. 
Chem.-Int. Edit., 2008, 47, 3592-3595 

5. J. Kwon, M. Dai, M. D. Halls, E. Langereis, Y. J. Chabal and R. G. 
Gordon, J. Phys. Chem. C, 2009, 113, 654-660 

11:00am  TF+NS+EM-ThM10  Nanomechanical Shaft-Loading Blister 
Testing of Thin Films, M. Berdova, A. Baby, J. Lyytinen, Aalto University, 
Finland, K. Grigoras, L. Kilpi, H. Ronkainen, VTT Technical Research 
Center, Finland, J. Koskinen, S. Franssila, Aalto University, Finland 
Atomic Layer Deposition (ALD) is important in micro- and nano-
electromechanical systems, since it provides smooth, uniform, pin-hole free, 
and conformal layers. In particular, ALD aluminum oxide has excellent 
properties such as high mechanical strength and hardness, and chemical 
inertness.  

We propose a new technique to measure the mechanical properties of ALD 
thin films. In the present work, a MEMS version shaft-loading blister test 
used to evaluate the adhesion between ALD alumina and Cu, Cr/Cu, SiNx, 
SiCx, and Pt thin films. The test structure consists of microcylinders with 
diameters 1000 µm and 2000 µm, surrounded by etched annular rings 
making 50 µm, 100 µm and 200 µm gaps (Figure 1). The test structures are 
examined by applying the load along the microcylinder with a help of CSM 
Microindenter, inducing displacement which then causes the delamination 
between thin films and therefore, contributing to obtain the work of 
adhesion (Figure 2).  

The fabrication of the test structure begins from the cleaning of double-side 
polished silicon wafer in hydrogen-peroxide-based (RCA) wet cleans. The 
following step is Atomic Layer Deposition of alumina on both sides of the 
wafer using trimethyl aluminium and water as precursors at 220 oC. 20 nm 
of Al2O3 is grown on one side as the etch mask, and 200 nm of Al2O3 is 
grown on another side to act both as an etch-stop mask and a testing layer. 
Next, the top layer is patterned to create alumina etch mask; and the rings 
are etched through silicon wafer by dry anisotropic Bosch process, forming 
this way a microculinders supported only by 200 nm of Al2O3 layer. Then, 
thin films (300 nm thick) are deposited by sputtering, or by PECVD 
techniques. The silicon nitride and silicon carbide were deposited at 300 oC. 
Magnetron sputtering was used for deposition of Pt, Cu, and Cr/Cu thin 
films at room temperature. Finally, those films are released by wet etching 
supporting alumina layer around the microcylinder. 

As a result, we have not observed the delamination for nitride and carbide 
films: after certain reached displacement point (7 µm for nitride, 12 µm for 
carbide) the films start to break. For soft films as Pt and Cu, at similar 
displacement values we observed the starting of delamination. Comparing 
copper and copper with chromium layer underneath, the delamination of the 
film with adhesive layer starts at higher displacement and load values, 
proving the adhesive action of chromium. In the case of metal films large 
displacement and delamination can be achieved without breaking of the 
film (Table 1). The proposed MEMS shaft-loading blister test might 
become a valuable tool for all thin film adhesion testing. 

11:20am  TF+NS+EM-ThM11  Phase Formation and Thermal Stability 
of Arc-Evaporated ZrAlN Thin Films, L. Rogström, Linköping 
University, Sweden, M.P. Johansson, SECO Tools AB, Sweden, M. 
Ahlgren, Sandvik Tooling AB, Sweden, N. Ghafoor, Linköping University, 
Sweden, J. Almer, Advanced Photon Source, Argonne National Lab, L. 
Hultman, M. Odén, Linköping University, Sweden 
Transition metal nitrides are widely used as wear protective coatings due to 
their high hardness also at elevated temperatures. Hence, TiAlN is one of 
the most common materials for coating of cutting tools. Its attractive 
mechanical properties are connected with the phase separation of the cubic 
TiAlN phase when the coating is exposed to high temperatures. The related 
ZrAlN system is less studied while its large miscibility gap with possibility 
for phase separation at elevated temperatures makes this material interesting 
for high temperature applications. Here, we present a comprehensive study 
of the phase formation in arc-evaporated ZrAlN thin films and their 
mechanical properties and thermal stability. Zr1-xAlxN thin films with a 
wide range of compositions (0.12<x<0.73) were grown by cathodic arc-
evaporation. The structure of as-deposited and annealed films was 
characterized by x-ray diffraction and transmission electron microscopy and 
the mechanical properties were determined by nanoindentation.  

The structure of the as-deposited ZrAlN thin films was found to depend on 
the Al-content. A low Al-content (x<0.38) results in cubic (c) structure 
films while for high Al-content (x>0.70) a hexagonal (h) ZrAlN phase is 
obtained [1]. In the compositional range between x=0.38 and x=0.70, the 
films exhibit a nanocomposite structure with a mixture of cubic, hexagonal, 
and amorphous phases [1, 2]. In all films, separation of ZrN and AlN takes 
place during annealing. In films with a nanocomposite structure, the phase 
transformation is initiated by nucleation and growth of c-ZrN in the ZrN-
rich domains while the AlN-rich domains remain largely amorphous at 
1100 °C [3]. Nucleation and growth of h-AlN is hindered by a high nitrogen 
content in the film and takes place at annealing above 1300 °C, 
simultaneously to loss of the excess nitrogen. The depletion of amorphous 
phase during annealing results in an improved hardness of the film. In the h-
ZrAlN films, ZrN- and AlN-rich domains form within the hexagonal lattice 
during annealing above 900 °C. The formation of domains with different 
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composition results in an increased hardness, from 24 GPa of the as-
deposited film to 31 GPa of the annealed film. The c-ZrAlN phase is found 
to be stable to annealing temperatures of 1000 °C, while at higher 
temperatures, h-AlN nucleates and grows. This is different from the c-
TiAlN system where spinodal decomposition occurs resulting in age 
hardening of the films.  

[1] L. Rogström et al., J. Vac. Sci. Technol. A 30 (2012) 031504. 

[2] L. Rogström et al., Scr. Mater. 62 (2010) 739. 

[3] L. Rogström et al., J. Mater. Res., In press (2012) 

11:40am  TF+NS+EM-ThM12  Ion-assisted Epitaxial Sputter-
Deposition and Properties of Metastable Zr1−xAlxN(001) (0.05 x 0.25 ) 
Alloys, AR.B. Mei, B.M. Howe, University of Illinois at Urbana 
Champaign, N. Ghafoor, E. Broitman, Linköping University, Sweden, M. 
Sardela, University of Illinois at Urbana Champaign, L. Hultman, 
Linköping University, Sweden, A. Rockett, J.E. Greene, I. Petrov, 
University of Illinois at Urbana Champaign, M. Oden, H. Fager, Linköping 
University, Sweden 
Single-phase epitaxial metastable Zr1-xAlxN/MgO(001) ( 0.05 x 0.25 ) thin 
films were deposited by ultra-high vacuum magnetically-unbalanced 
reactive magnetron sputtering from a single Zr0.75Al0.25target at a substrate 
temperature of 650°C. We control the AlN content , x , in the films by 
varying the ion energy ( 5 < Ei < 55 eV) incident at the film growth surface 
with a constant ion to metal flux ratio of 8. The net atomic flux was 
decreased from 3.16 to 2.45x1015 atoms cm-2s-1, due to efficient resputtering 
of deposited Al atoms (27 amu) by Ar+ ions (40 amu) neutralized and 
backscattered from heavy Zr atoms (91.2 amu). Consequentially, films 
varied in thickness from 400 nm to 290 nm during 20 min depositions. HfN 
buffer layers were deposited on the MgO(001) substrates to reduce the 
lattice mismatch from ~8 to ~0.5%. High resolution x-ray diffraction ω-2θ 
scans and reciprocal lattice mapping revealed single-phase NaCl structure 
with a cube-on-cube orientation relative to the substrate, (001)Zr1-x Alx 

N||(001)MgO, and relaxed lattice parameters varying from 4.546 with x = 0.25 
to 4.598Å with x = 0.05. Film nanoindentation measurements showed that 
hardness decreases from 28.6 to 23.3 Gpa and Young’s modulus increases 
from 263 Gpa to 296.8 GP as x is varied from 0.25 to 0.05. For the same 
range in x, electronic transport measurements established the films to have 
electron mobilities increasing from 2.67 to 462 cm2V-1s-1, resistivities 
decreasing from 162.4 to 25.4 μΩ-cm, and positive temperature coefficients 
of resistivity spanning from 0.3164 to 1.307 Ω-cm K-1. Films deposited with 
incident ion energy above 35 eV (x< 0.08 ) exhibited superconductivity 
with Tc of 8.26 K.  
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