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8:20am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM2  Controlled 
Coupling of Silicon Atomic Quantum Dots at Room Temperature: A 
Basis for Atomic Electronics?, R.A. Wolkow, University of Alberta and 
The National Institute for Nanotechnology, Canada, J. Pitters, The National 
Institute for Nanotechnology, Canada, G. DiLabio, M. Taucer, P. Piva, L. 
Livadaru, University of Alberta and The National Institute for 
Nanotechnology, Canada INVITED 
Quantum dots are small entities, typically consisting of just a few thousands 
atoms, that in some ways act like a single atom. The constituent atoms in a 
dot coalesce their electronic properties to exhibit fairly simple and 
potentially very useful properties. It turns out that collectives of dots exhibit 
joint electronic properties of yet more interest. Unfortunately, though 
extremely small, the finite size of typical quantum dots puts a limit on how 
close multiple dots can be placed, and that in turn limits how strong the 
coupling between dots can be. Because inter-dot coupling is weak, 
properties of interest are only manifest at very low temperatures 
(milliKelvin). In this work the ultimate small quantum dot is described – we 
replace an “artificial atom” with a true atom - with great benefit. 

  

It is demonstrated that the zero-dimensional character of the silicon atom 
dangling bond (DB) state allows controlled formation and occupation of a 
new form of quantum dot assemblies - at room temperature. Coulomb 
repulsion causes DBs separated by less than ~2 nm to experience reduced 
localized charge. The unoccupied states so created allow a previously 
unobserved electron tunnel-coupling of DBs, evidenced by a pronounced 
change in the time-averaged view recorded by scanning tunneling 
microscopy. It is shown that fabrication geometry determines net electron 
occupation and tunnel-coupling strength within multi-DB ensembles and 
moreover that electrostatic separation of degenerate states allows controlled 
electron occupation within an ensemble. 

  

Some speculation on the viability of a new “atomic electronics” based upon 
these results will be offered. 

9:00am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM4  Atomic Forces 
and Energy Dissipation of a Bi-Stable Molecular Junction, C. Lotze, 
Freie Universtiät Berlin, Germany, M. Corso, K.J. Franke, F.V. Oppen, J.I. 
Pascual, Freie Universität Berlin, Germany 
Tuning Fork based dynamic STM/AFM is a well established method 
combining the advantages of scanning tunneling and dynamic force 
microscopy. Using tuning forks with high stiffness, stable measurements 
with small amplitudes, below 1 Å can be performed. In this way, 
conductance and frequency shift measurements of molecular junction can 
be obtained simultaneously [1] with intramolecular resolution [2]. 

One of the most intriguing aspects of molecular junctions relates to the 
effect of structural bi-stabilities to the properties of the junction. These lead, 
for example, to conductance fluctuations, telegraph noise and the possibility 
to switch the electrical transport through the junction. 

In this presentation, we characterize a model bi-stable molecular system 
using dynamic force spectroscopy. The effect of current-induced stochastic 
fluctuations of conductance are correlated with fluctuations in force. In our 
experiment we identified the last from both, frequency shifts and energy 
dissipation measurements, picturing a regime in which electrical transport 
and mechanical motion are coupled. 

[1] N. Fournier et. al, PhysRevB 84, 035435 (2011), 

[2] L. Gross et. al, Science 324, 1428 (2009) 

9:20am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM5  Acetylene on 
Cu(111): Imaging a Molecular Pattern with a Constantly Rearranging 
Tip, Y. Zhu, J. Wyrick, K.D. Cohen, K. Magnone, C. Holzke, D. Salib, Q. 
Ma, D.Z. Sun, L. Bartels, University of California Riverside 
Abstract: Using variable temperature STM and DFT simulation, we identify 
the phases of acetylene adsorbed on the Cu(111) surface. Depending on the 

coverage, a diffraction-derived surface pattern of acetylene on Cu(111) is 
validated by STM. The modification of the STM image transfer function 
through the adsorption of an acetylene molecule onto the tip apex is taken 
into account. In this case, the images of acetylene patterns on Cu(111) also 
include direct evidence of the rotational orientation and dynamics of the 
acetylene species attached to the tip apex. DFT modeling of 
acetylene/Cu(111) reveals that the molecular orientation and separation is 
governed by a balance of repulsive interactions associated with stress 
induced in the top surface layer and attractive interactions mediated by the 
electronic structure of the substrate. Computationally modeling of the 
substrate with 3 layers obtains the periodicity of the intermolecular 
interaction that provides a theoretical underpinning for the experimentally 
observed molecular arrangement. 

9:40am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM6  Atomic Scale 
Imaging and Electronic Structure of Trimethylaluminum Deposition on 
III-V Semiconductor (110) Surfaces, T.J. Kent*, M. Edmonds, E. 
Chagarov, A.C. Kummel, University of California San Diego 
Silicon based metal oxide semiconductor field effect transistors (Si-
MOSFETs) are quickly approaching their theoretical performance limits, as 
a result many semiconductors are being explored as an alternative channel 
material for use in MOSFETs. III-V semiconductors are an appealing 
alternative to Si because of their higher electron mobilities. The limiting 
factor in III-V based MOSFET performance is defect states which prevent 
effective modulation of the Fermi level. The InGaAs (001) As-rich (2x4) 
surface contains two types of unit cells: ideal unit cells with double As-
dimers and defect unit cells with single As-Dimers. The missing As-dimer 
unit cells, which comprise ~50% of the surface, are believed to cause 
electronic defect states at the semiconductor-oxide interface, specifically at 
the conduction band edge of the semiconductor. In-situ scanning tunneling 
microscopy and spectroscopy (STM/STS) and density function theory 
(DFT) modeling show that TMA readily passivates the As-As dimers in the 
ideal unit cell but the missing InGaAs(001)-2x4 may not be fully passivated 
by TMA. To improve the electronic structure of the interface, the sidewalls 
of the finFETs on InGaAs(001) can be fabricated along the (110) direction. 
The (110) surface contains only buckled III-V heterodimers in which the 
lower group III atom is sp2 hybridized with an empty dangling bond and the 
upper group V atom is sp3 hybridized with a full dangling bond. This 
results in an electrically unpinned surface. 

  

To investigate the benefits of using a (110) surface as a channel material, 
the atomic and electronic structure of the ALD precursor 
trimethylaluminum (TMA) monolayer deposited on III-V (110) surfaces has 
been studied using in-situ STM and STS. Both GaAs and InGaAs samples 
were studied. GaAs wafers were obtained from Wafertech with a Si doping 
concentration of 4x1018/cm3. The (001) samples were cleaved in-situ to 
expose the (110) surface. Samples were transferred to the STM chamber 
(base pressure 1x10-11 torr) where the atomic bonding structure of the 
precursor monolayer unit cell was determined. STS, which probes the local 
density of states (LDOS), was used to determine Fermi level pinning. A 
model of TMA chemisorption was developed in which TMA chemisorbs 
between adjacent As atoms on the surface, giving a highly ordered 
monolayer with a high nucleation density which could allow for aggressive 
effective oxide thickness (EOT) scaling. 

10:40am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM9  A New 
Experimental Method to Determine the Torsional Spring Constants of 
Microcantilevers, G. Haehner, J.D. Parkin, University of St Andrews, UK 
Cantilever based technologies have seen an ever increasing level of interest 
since the atomic force microscope (AFM) was introduced more than two 
decades ago. Recent developments employ microcantilevers as stand-alone 
sensors by exploiting the dependence of their oscillating properties on 
external parameters such as adsorbed mass [1], or the density and the 
viscosity of a liquid environment [2,3]. They are also a key part in many 
microelectromechanical systems (MEMS) [4]. In order to quantify 
measurements performed with microcantilevers their stiffness or spring 
constants have to be known. Following calibration of the spring constants a 
change in oscillation behavior can be quantitatively related to physical 
parameters that are probed. The torsional modes of oscillation have 
attracted significant attention due to their high sensitivity towards lateral 
and friction forces, and recent developments in torsional-tapping AFM 
technology [5]. However, the methods available to determine the torsional 
spring constants experimentally are in general not simple, not very reliable, 
or risk damage to the cantilever [6]. 
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We demonstrate a new method to determine the spring constants of the 
torsional modes of microcantilevers experimentally with high accuracy and 
precision. The method is fast, non-destructive and non-invasive. It is based 
on measuring the change in the resonance frequencies of the torsional 
modes as a function of the fluid flow escaping from a microchannel. Results 
for rectangular cantilevers will be presented and compared to results 
obtained with other methods [7]. 

[1] J. D. Parkin and G. Hähner, Rev. Sci. Instrum. 82 (3), 035108 (2011). 

[2] N. McLoughlin, S. L. Lee, and G. Hähner, Appl. Phys. Lett. 89 (18), 
184106 (2006). 

[3] N. McLoughlin, S. L. Lee, and G. Hähner, Lab Chip , 1057 (2007). 

[4] S. Beeby, G. Ensell, N. Kraft, and N. White, MEMS Mechanical 
Sensors. (Artech House London, 2004). 

[5] O. Sahin and N. Erina, Nanotechnology 19 (44), 445717 (2008). 

[6] M. Munz, Journal of Physics D-Applied Physics 43 (6), 063001 (2010). 

[7] C. P. Green, H. Lioe, J. P. Cleveland, R. Proksch, P. Mulvaney, and J. E. 
Sader, Rev. Sci. Instrum. 75 (6), 1988 (2004). 

11:00am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM10  A Torsional 
Device for Easy, Accurate and Traceable Force Calibration of AFM 
Cantilevers, J.F. Portoles, P.J. Cumpson, Newcastle University, UK 
Accurate measurement of biologically-relevant forces in the range of pN to 
μN is an important problem in nanoscience.  

A number of force probe techniques have been applied in recent years. The 
most popular is the Atomic Force Microscope (AFM). Accuracy of force 
measurement relies on calibration of the probe stiffness which has led to the 
development of many calibration methods[1], particularly for AFM 
microcantilevers. However these methods typically exhibit uncertainties of 
at best 15% to 20% and are often very time consuming. Dependency on 
material properties and cantilever geometry further complicate their 
application and take extra operator time. In contrast, one rapid and 
straightforward method involves the use of reference cantilevers (the 
"cantilever-on-cantilever" method) or MEMS reference devices. This 
approach requires that a calibrated reference device is available, but it has 
been shown to be effective in providing measurement traceability[2]. 

The main remaining difficulty of this approach for typical users is the 
positional uncertainty of the tip on the reference device, which can 
introduce calibration uncertainties of up to around 6%. Here we present a 
new reference device based on a torsional spring of relatively large 
dimensions compared to the typical AFM cantilever and demonstrate how it 
is calibrated. This method has the potential to calibrate the reference device 
traceably[3] to the SI with a 1% accuracy by applying techniques typically 
used for the characterisation of micromechanical devices. The large 
dimensions of the device reduce the positional uncertainty below 1% and 
simultaneously allow the use of the device as an effective reference array 
with different reference stiffnesses at different positions ranging from 0.090 
N/m to 4.5 N/m 

[1] P J Cumpson, C A Clifford, J F Portolés, J E Johnstone, M Munz 
Cantilever Spring-Constant Calibration in Atomic Force Microscopy, 
pp289-314 in Volume VIII of Applied Scanning Probe Methods, Ed. B 
Bhushan and H Fuchs (Springer, New York, 2009) 

[2] P J Cumpson PJ, J Hedley, Nanotechnology 14 (2003) pp. 1279-1288 

[3] J F Portolés, P J Cumpson, J Hedley, S Allen, P M Williams & S J B 
Tendler, Journal of Experimental Nanoscience 1 (2006) pp51-62. 

11:20am  SP+AS+BI+ET+MI+NM+NS+SS+TF-WeM11  Nanoscale 
Surface Assembly by Single-Molecule Cut-and-Paste, H.E. Gaub, 
Ludwig-Maximilians Universitat, Germany INVITED 
Bottom up assembly of functional molecular ensembles with novel 
properties emerging from composition and arrangement of its constituents is 
a prime goal of nanotechnology. With the development of Single-Molecule 
Cut-and-Paste (SMC&P) we provided a platform technology for the 
assembly of biomolecules at surfaces. It combines the Å-positioning 
precision of the AFM with the selectivity of DNA hybridization to pick 
individual molecules from a depot chip and allows to arrange them on a 
construction site one by one. An overview on different applications of this 
technology will be given in this talk. One recent example demonstrates the 
functional of receptors for small molecules. By SMC&P we assembled 
binding sites for malachite green in a molecule-by-molecule assembly 
process from the two halves of a split aptamer. We show that only a 
perfectly joined binding site immobilizes the fluorophore and enhances the 
fluorescence quantum yield by several orders of magnitude. To corroborate 
the robustness of this approach we produced a micron-sized structure 
consisting of more than 500 reconstituted binding sites. To the best of our 
knowledge this is the first demonstration of a one by one bottom up 
functional bio-molecular assembly. Figure included in supplemental 

document. S. Kufer, Puchner E. M.,Gumpp H., Liedel T. & H. E. Gaub 
Science (2008), Vol 319, p 594-S. Kufer, Strackharn, M., Stahl S.W., 
Gumpp H., Puchner E. M. & H. E. Gaub Nature Nanotechnology (2009), 
Vol 4, p 45-M. Erdmann, R. David. A.N. Fornof, and H. E. Gaub, Nature 
Chemistry (2010), Vol 2, p 755-M. Strackharn, S. Stahl, E. Puchner & H.E. 
Gaub, Nanoletters (2012) in press 
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