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In Situ Microscopy and Spectroscopy Focus Topic 
Room: 7 - Session IS+AS+OX+ET-WeM 

In Situ Characterization of Solids: Film Growth, Defects, 
and Interfaces 
Moderator: P.W. Sutter, Brookhaven National Laboratory 

8:00am  IS+AS+OX+ET-WeM1  Revealing Gas-Surface Radical 
Reaction Mechanisms of Self-Assembled Monolayers by Scanning 
Tunneling Microscopy, D.Y. Lee, M.M. Jobbins, S.A. Kandel, University 
of Notre Dame 
Scanning Tunneling Microscopy (STM) in ultra-high-vacuum is used in situ 
to investigate the surface changes of the octanethiolate self-assembled 
monolayer (SAM) on Au(111) upon reaction with atomic hydrogen and 
with atomic chlorine. For both reactions, the surface structure heavily 
influences the rate of monolayer degradation, but the effect of surface 
defects on reactivity is completely opposite when comparing the two 
systems. Monolayer reactivity increases with increasing hydrogen-atom 
exposure while decreases with further reaction with atomic chlorine. The 
monolayer-versus-exposure data are examined by kinetic Monte Carlo 
simulations and reveal that, for H-atom exposure, molecules located near 
surface defect sites are potentially over 500 times more reactive than close-
packed areas. For Cl-atom interactions, however, the opposite occurs: close-
packed regions are at least 100 times more reactive than defect sites. These 
observations result directly from the alkyl hydrogen abstraction and sulfur-
gold bond cleavage mechanisms of SAM upon gas-phase radical 
bombardment. 

8:20am  IS+AS+OX+ET-WeM2  In Situ Imaging of the Nucleation and 
Growth of Epitaxial Anatase TiO2(001) Films on SrTiO3(001), Y.G. Du, 
D.J. Kim, T.C. Kaspar, Pacific Northwest National Laboratory, S.E. 
Chamberlin, University of Wisconsin Milwaukee, I. Lyubinetsky, S.A. 
Chambers, Pacific Northwest National Laboratory 
TiO2 has attracted much attention because of its potential utility in hydrogen 
production via water splitting, environmental remediation, and dye-
sensitized solar cell fabrication. Heteroepitaxial growth of anatase is a 
powerful and unique way to fabricate model surfaces of the less stable 
anatase polymorph for fundamental surface science studies. In this work, 
the growth of TiO2 anatase films on Nb doped SrTiO3(001) by molecular 
beam epitaxy has been studied in-situ by scanning tunneling microscopy. 
We show that the initial growth follows the Stranski-Krastanov mode, 
where islands form on top of a wetting layer consisting of two monolayers 
(ML) of TiO2. Well-defined (4x1) and (1x4) terraces are observed for film 
thicknesses in excess of 3 nm. At larger film thicknesses, large oriented 
crystallites form as a result of the coalescence of smaller islands. Within a 
given crystallite, either (4x1) or (1x4) reconstructed terraces account for 
majority of the surface. The anatase grows in units of bilayers, resulting in a 
step height of 2 ML. This result explains the fact that the measured period 
of the RHEED specular-beam intensity oscillations corresponds to the time 
required for deposition of 2 ML. Ar ion sputtering and UHV annealing 
results in a transformation to coexisting (4x1) and (1x4) reconstructed 
terraces on individual crystallites, as commonly observed by ex-situ STM 
studies. In addition, we show that the nucleation and growth of anatase 
films are influenced by Nb doping in the SrTiO3 substrates by comparing 
with similar growth occurring on pure SrTiO3 substrates. 

8:40am  IS+AS+OX+ET-WeM3  In Situ Synchrotron X-Ray Studies of 
Epitaxial Oxide Thin Film Synthesis Behavior, J.A. Eastman, M.J. 
Highland, P.H. Fuoss, Argonne National Laboratory, T.M. McCleskey, Los 
Alamos National Laboratory, D.D. Fong, C.M. Folkman, S.K. Keun, E. 
Perret, P.M. Baldo, Argonne National Laboratory, E. Bauer, Q. Jia, Los 
Alamos National Laboratory INVITED 
Intense interest is focused on the growth science of epitaxial oxide thin 
films because of continuing discoveries of new interesting and important 
properties. The key to achieving desired maximum functionality of oxide 
heterostructures is the ability to synthesize high-quality films with full 
control of factors such as composition, crystallographic orientation, surface 
termination, and strain state. Many of the most promising thin film 
synthesis techniques involve non-vacuum, high-temperature environmental 
conditions that are difficult or impossible to probe using standard 
spectroscopic or structural probes. However, the use of high-energy x-rays 
available at synchrotron sources such as the Advanced Photon Source 
(APS) provides an opportunity to obtain real-time atomic-level structural 
and chemical information during synthesis. This talk will describe results 
from recent studies at APS Sector 12ID-D using an in-situ x-ray approach 

to understand and control the synthesis behavior of complex oxide epitaxial 
thin films prepared by two very different techniques: sputter deposition or 
polymer assisted deposition (PAD). 

We recently built a new RF magnetron sputter deposition system at the 
APS, which brings to bear state-of-the-art real-time in-situ x-ray scattering 
and spectroscopy techniques to provide insight into the growth behavior of 
epitaxial oxide thin film heterostructures. Initial studies of the growth 
behavior of epitaxial films such as (001) LaGaO3, SrZrO4, and 
LaGaO3/SrZrO3 multilayer heterostructures during off-axis sputtering will 
be described, focusing on the effects of epitaxial strain and electrical 
compensation (e.g., surface polarity) on growth behavior. 

PAD is a solution technique capable of synthesizing dense epitaxial thin 
films. Past work at Los Alamos has demonstrated that PAD can be used to 
prepare aligned epitaxial films of many different materials. We recently 
performed initial in-situ synchrotron x-ray experiments aimed at obtaining a 
fundamental understanding of the nucleation and growth processes 
associated with epitaxial film formation. Studies of the synthesis behavior 
of (001) BaTiO3 epitaxial films will be described in this talk, focusing on 
the effects of thermal history and choice of substrate material on 
crystallization behavior and the development of epitaxy. 

Argonne researchers were supported by the U. S. Department of Energy 
(DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering 
Division. Los Alamos researchers were supported by the DOE through the 
LANL/LDRD Program. Use of the APS was supported by BES, under 
Contract DE-AC02-06CH11357 between UChicago Argonne LLC and the 
Department of Energy. 

9:40am  IS+AS+OX+ET-WeM6  Understanding the Dynamic 
Electronic Properties of Electrode Materials by In Situ X-ray 
Absorption Spectroscopy, M. Bagge-Hansen, J.R.I. Lee, A. Wittstock, 
M.D. Merrill, M.A. Worsley, T. Ogitsu, B.C. Wood, T. Baumann, M. 
Stadermann, M. Biener, J. Biener, T. van Buuren, Lawrence Livermore 
National Laboratory 
In situ characterization of the evolution in electronic structure of electrode 
materials during repeated charge-discharge cycling is fundamentally 
important for more fully understanding the processes of charge storage and 
degradation, which, in turn, is essential for the development of new 
electrical energy storage (EES) materials with tailored properties and 
improved performance. X-ray spectroscopies provide ideal tools with which 
to obtain enhanced insight into the origins of electrode behavior in EES 
systems due to their capabilities for direct, element specific, 
characterization of the electronic densities of states. To date, in situ studies 
of EES materials have primarily focused on hard x-ray experiments due to 
the challenges associated with UHV compatibility and high photon 
attenuation of cells for soft x-ray measurements. Nonetheless, the use of 
soft x-ray spectroscopies to EES systems is vital since they provide 
complementary information that cannot be obtained via hard x-ray studies. 
We report the development of a cell for in situ soft x-ray emission 
spectroscopy and x-ray absorption spectroscopy studies of EES materials 
and will discuss experiments focused upon the x-ray spectroscopy 
characterization of a series of novel electrode materials. Prepared by LLNL 
under Contract DE-AC52-07NA27344. 

10:40am  IS+AS+OX+ET-WeM9  In Situ Studies of Al2O3 ALD Growth 
and Self-cleaning on III-V Surfaces by STM and XPS, L.N.J. Rodriguez, 
A. De Clercq, IMEC, Belgium, M. Tallarida, BTU Cottbus, Germany, D. 
Cuypers, IMEC, Belgium, J.P. Locquet, KU Leuven, Belgium, S. Van 
Elshocht, C. Adelmann, M. Caymax, IMEC, Belgium 
A custom built ALD UHV-compatible reactor has been used to study the 
growth of TMA on InP and InAlAs by STM in conjunction with additional 
studies performed in a reactor attached to a synchrotron XPS. The effects of 
selected ex-situ cleans has been measured along with the subsequent cycles 
of ALD growth from TMA and water. The STM data shows morphological 
differences between the ex-situ cleans on InP, with sulphuric acid cleans 
yielding plateaus but ammonium sulphide cleans yielding rough surfaces. 
In-situ measurements of these surfaces after TMA dosing shows the growth 
of islands which converge to film closure after ten cycles of ALD growth. 
In-situ measurements of the I-V curves by STS allowed the creation of 
bandgap maps of the III-V interfaces after TMA dosing. These bandgap 
maps showed a non-uniform distribution with regions of either higher or 
lower bandgap. The mean bandgap was seen to decrease with increasing 
numbers of ALD cycles. In-situ XPS data on similar systems showed a 
reduction in surface oxides for InAlAs but not for InP. The reduction of 
arsenic oxides with a creation of metallic arsenic, along partial reduction of 
indium oxides and a conversion of aluminium sub-oxides to aluminium 
oxide was seen in the former case. In the latter case, a formal oxidation of 
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the phosphorus was seen with increased TMA dosing instead of a self-
cleaning effect. 

11:00am  IS+AS+OX+ET-WeM10  In Situ Transport Measurement of 
Kinetically Controlled Bi Atomic Layers, Y. Fujikawa, E. Saitoh, 
Tohoku University, Japan 
Thin film growth of Bi and related compounds has been attracted much 
attention because of their exotic properties originating in the large spin-orbit 
interaction of Bi. Growth of its simple substance is known to result in the 
formation of a thin-film phase in the initial stage, which is taken over by the 
bulk growth when the coverage exceeds several monolayers (ML). [1] With 
typical growth conditions, this transition takes place before the completion 
of the thin-film layer, which tends to agglomerate to form 4-ML thick 
islands, making it difficult to measure the intrinsic property of the thin-film 
phase. In this work, Bi growth on Si(111)-7x7 has been performed in a 
multi-probe VT-STM system, which provides wide-ranging opportunity of 
kinetic control and in-situ transport measurement during the thin film 
growth. By tuning the kinetic condition of the growth, it becomes possible 
to grow the thin-film phase uniformly covering the substrate. Its 
conductivity, monotonically increasing with the increase of the temperature, 
would suggest the variable-range hopping conduction rather than the carrier 
excitation of semiconductors. In-situ transport measurement has been 
performed during the layer-by-layer growth of the Bi thin-film phase, 
distinguishing the conductivity of each growth unit. It fluctuates with 
periods of 2 and 4 ML, which may reflect the atomic structure of the thin-
film phase. 

[1] Nagao et al., Phys. Rev. Lett. 93, 105501 (2004). 

11:20am  IS+AS+OX+ET-WeM11  CAMECA IMS Series Advanced 
Ion Microscopy: High Throughput, Repeatability & Automation, P. 
Peres, F. Desse, F. HIllion, M. Schuhmacher, Cameca, S.a., France, A.N. 
Davis, CAMECA Instruments, Inc. 
The advantage of CAMECA IMS Series high performance secondary ion 
mass spectrometers are well established: extreme sensitivity, high mass 
resolution, and high dynamic range, providing low detection limits while 
keeping high analysis throughput. This instrument delivers high analytical 
performance for a wide range of applications: Si based devices, III-V and 
II-VI devices, both bulk materials and thin-film technology, as well as for 
different material science applications. 

In order to meet the growing demand in terms of reproducibility and 
throughput performance as well as ease of use, CAMECA has developed a 
new IMS series, 7f-Auto.  

The primary column has been redesigned in order to provide an easier and 
faster primary beam tuning. For high efficiency operation, automated 
routines for tuning the instrument are added for both primary and secondary 
columns, nominally: aperture adjustment, secondary ion beam centering, 
detector adjustement, among others. These routines not only increase the 
ease of use, but also enhance the reproducibility of the instruments by 
minimizing operator-related biases.  

A motorized storage chamber has also been developed allowing to keep, 
under UHV environment, up to six sample holders. The holder exchange 
between the storage chamber and analysis chamber is fully motorized and 
computer controlled, allowing a set of analyses to be performed in 
automated, unattended mode on multiple sample holders. This significantly 
improves the throughput of the tool, since up to 24 samples (assuming 4 
samples per holder) can be analysed in chained mode, possibly overnight. 
These developments will be presented and discussed in detail. 



 3 Author Index 

Authors Index 
Bold page numbers indicate the presenter 

—	A	— 
Adelmann, C.: IS+AS+OX+ET-WeM9, 1 

—	B	— 
Bagge-Hansen, M.: IS+AS+OX+ET-WeM6, 1 
Baldo, P.M.: IS+AS+OX+ET-WeM3, 1 
Bauer, E.: IS+AS+OX+ET-WeM3, 1 
Baumann, T.: IS+AS+OX+ET-WeM6, 1 
Biener, J.: IS+AS+OX+ET-WeM6, 1 
Biener, M.: IS+AS+OX+ET-WeM6, 1 

—	C	— 
Caymax, M.: IS+AS+OX+ET-WeM9, 1 
Chamberlin, S.E.: IS+AS+OX+ET-WeM2, 1 
Chambers, S.A.: IS+AS+OX+ET-WeM2, 1 
Cuypers, D.: IS+AS+OX+ET-WeM9, 1 

—	D	— 
Davis, A.N.: IS+AS+OX+ET-WeM11, 2 
De Clercq, A.: IS+AS+OX+ET-WeM9, 1 
Desse, F.: IS+AS+OX+ET-WeM11, 2 
Du, Y.G.: IS+AS+OX+ET-WeM2, 1 

—	E	— 
Eastman, J.A.: IS+AS+OX+ET-WeM3, 1 

—	F	— 
Folkman, C.M.: IS+AS+OX+ET-WeM3, 1 

Fong, D.D.: IS+AS+OX+ET-WeM3, 1 
Fujikawa, Y.: IS+AS+OX+ET-WeM10, 2 
Fuoss, P.H.: IS+AS+OX+ET-WeM3, 1 

—	H	— 
Highland, M.J.: IS+AS+OX+ET-WeM3, 1 
HIllion, F.: IS+AS+OX+ET-WeM11, 2 

—	J	— 
Jia, Q.: IS+AS+OX+ET-WeM3, 1 
Jobbins, M.M.: IS+AS+OX+ET-WeM1, 1 

—	K	— 
Kandel, S.A.: IS+AS+OX+ET-WeM1, 1 
Kaspar, T.C.: IS+AS+OX+ET-WeM2, 1 
Keun, S.K.: IS+AS+OX+ET-WeM3, 1 
Kim, D.J.: IS+AS+OX+ET-WeM2, 1 

—	L	— 
Lee, D.Y.: IS+AS+OX+ET-WeM1, 1 
Lee, J.R.I.: IS+AS+OX+ET-WeM6, 1 
Locquet, J.P.: IS+AS+OX+ET-WeM9, 1 
Lyubinetsky, I.: IS+AS+OX+ET-WeM2, 1 

—	M	— 
McCleskey, T.M.: IS+AS+OX+ET-WeM3, 1 
Merrill, M.D.: IS+AS+OX+ET-WeM6, 1 

—	O	— 
Ogitsu, T.: IS+AS+OX+ET-WeM6, 1 

—	P	— 
Peres, P.: IS+AS+OX+ET-WeM11, 2 
Perret, E.: IS+AS+OX+ET-WeM3, 1 

—	R	— 
Rodriguez, L.N.J.: IS+AS+OX+ET-WeM9, 1 

—	S	— 
Saitoh, E.: IS+AS+OX+ET-WeM10, 2 
Schuhmacher, M.: IS+AS+OX+ET-WeM11, 2 
Stadermann, M.: IS+AS+OX+ET-WeM6, 1 

—	T	— 
Tallarida, M.: IS+AS+OX+ET-WeM9, 1 

—	V	— 
van Buuren, T.: IS+AS+OX+ET-WeM6, 1 
Van Elshocht, S.: IS+AS+OX+ET-WeM9, 1 

—	W	— 
Wittstock, A.: IS+AS+OX+ET-WeM6, 1 
Wood, B.C.: IS+AS+OX+ET-WeM6, 1 
Worsley, M.A.: IS+AS+OX+ET-WeM6, 1 

 


