Tuesday Afternoon, October 30, 2012

In Situ Microscopy and Spectroscopy Focus Topic Room: 7 - Session IS+AS+BI+ET+GR+NS-TuA

In Situ Studies of Organic and Soft Materials and In Situ Microscopy

Moderator: K. Artyushkova, The University of New Mexico, J.A. Eastman, Argonne National Laboratory

2:00pm IS+AS+BI+ET+GR+NS-TuA1 Micronutrient Detection and Quantification from Data Obtained from Plasma Pencil Atmospheric Mass Spectrometry, *M.J. Stein*, *E. Lo*, *C. Waterton*, *D.G. Castner*, *B.D. Ratner*, University of Washington

The analysis of micronutrient quantities is one component in the strategy to reduce the global burden of malnutrition-related disease. Accessibility of the proper equipment and equipment complexity impede nutrient testing in the areas that might benefit most from these studies. In this work, we present an analysis of micronutrients in a physiological range from blood plasma using plasma pencil atmospheric mass spectrometry (PPAMS), a method for sampling a sample's surface at ambient temperature and pressure conditions. The effectiveness of our PPAMS system is demonstrated using characteristic and tandem mass spectra on raw nutrient controls. Key micronutrient peaks and fragmentation patterns are observed. Next, we analyze a sample matrix of micronutrients in porcine plasma in which the nutrient concentrations are varied. Principal component analysis (PCA) is then employed on the spectra. The resulting PCA scores showed that these nutrients are separable at different nutrient concentrations to 95% confidence. The loadings peaks are shown to contain several of the key peaks observed in the raw nutrient powders as principal separators. The PPAMS technique is compared to several traditional techniques such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electrospray ionization mass spectrometry (ESI-MS). Separation of the nutrients at concentrations relevant for human blood-based nutrient detection is possible in both ESI-MS and PPAMS. However, ToF-SIMS is found to require 5x to 1000x higher concentrations than PPAMS for folate, vitamin A, and iodine in order to achieve similar separation of the micronutrients. In addition to the qualitative information obtained from the PCA results, quantitative predictive values are obtained by the application of a Bayesian wavelet-based functional mixed model. Since the mass spectra are modeled as functions in this model, peak detection methods are not required and the final results utilized the full spectral response. The final predicted values are compared to the known concentration values and the mean standard error of prediction (MSEP) is calculated. The accuracy of the predictive model was found to be dependent on the ionization potential of the individual nutrients. Metallic-nutrients were hypothesized to be more sensitive to outside cationization effects than their larger organic counterparts. In addition to quantitation, the physical properties of the ionization process were explored. Using XPS and ellipsometry in conjunction with carefully timed exposures and concurrent fragment PCA, it is determined that the PPAMS ionization is a softer form of ionization than most vacuum-based techniques.

2:20pm IS+AS+BI+ET+GR+NS-TuA2 *In Situ* Real Time Examination of the Thin Film Growth of Pentacene on Polymeric Dielectrics Using X-Ray Synchrotron Radiation: Unexpected Changes in the Evolution of Surface Morphology with Substrate, *T.V. Desai, A.R. Woll, J.R. Engstrom*, Cornell University

We have examined the thin film growth of pentacene on SiO₂ and on three different polymeric dielectrics using in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). The polymeric dielectrics investigated spanned the range from a low surface energy hydrophobic surface (polystyrene, PS), to a medium surface energy hydrophobic surface (polymethylmethacrylate, PMMA), to a high surface energy hydrophilic surface [poly(ethylene imine), PEI]. We have also compared these results to pentacene growth on clean SiO2. On all surfaces, pentacene forms a polycrystalline thin film, whose structure is that of the previously identified "thin film" phase. From in situ real-time x-ray scattering, we find that pentacene exhibits layer-by-layer (LbL) growth on all surfaces investigated, but the extent of LbL growth is a strong function of the underlying substrate. This result is unexpected as the transition to more 3D-like growth occurs for thicknesses where the underlying substrate is effectively almost entirely covered by the growing pentacene thin film. Layer-by-layer growth is significantly more prolonged on PEI (up to ~6 MLs), followed by SiO₂ and PMMA (up to ~4 MLs) and finally PS (up to ~ 3 MLs). This trend is also seen in the variation of both the roughness and the in-plane feature sizes of ~ 10 ML thick films, where the films are the smoothest, and the feature sizes are the largest for growth on PEI, whereas on PS, the films are roughest, and the feature sizes are the smallest. Concerning possible reasons for this behavior, we can exclude the effects of the structure of the crystalline thin film (they were the same in all cases), and the roughness of the polymeric dielectric (rms roughness differed by < 0.1 nm) as major contributing factors. Surface energy of the polymeric thin films, however, provided the best explanation for the observed behavior, suggesting that thermodynamic driving forces play an important role in the evolution of thin film structure. In terms of molecular scale phenomena, interlayer transport and step-edge crossing events may be influenced by the mobility of the near-surface polymeric layers in the underlying substrate, which can be quite different for the ultrathin PEI layers vs. the much thicker PMMA and PS thin films.

2:40pm IS+AS+BI+ET+GR+NS-TuA3 In Situ, Real-Time Diagnostics of Colon Cancer and Inflammatory Bowel Diseases by Direct Combination of Endoscopy and Rapid Evaporative Ionization Mass Spectrometry, Z. Takats, Imperial College, UK, L.A. Sasi-Szabo, University of Debrecen, Hungary, J. Kinross, Imperial College, UK, J. Balog, Medimass Ltd., L. Muirhead, K.C. Schafer, C. Guallar-Hoyas, Imperial College, UK INVITED

Rapid identification of biological tissues is a long-standing problem on various fields of interventional medicine, with special regard to cancer diagnostics and cancer surgery. WWhile histological techniques provide the ultimate solution for the cellular-level identification of cancer cells, the approach is extremely complex and time consuming. Nevertheless, accelerated version of histopathology (so-called 'frozen section' method) is widely used for the intraoperative characterization of tissue samples removed from the surgical area. Since frozen section histology is less reliable than the traditional approaches, and the accelerated procedure still takes approx. 30 minutes for a single sample, there has been ongoing research for the development of more accurate and faster methods.

Molecular spectroscopy techniques including IR, Raman, solid state NMR and mass spectrometry have been used for the characterization of intact biological tissues and showed enormous potential for the differentiation of tissues with various histologies, including multiple different types of cancer.

Rapid Evaporative Ionization Mass Spectrometry is based on the observation that electrosurgical dissection of vital tissues involves the ionization of various tissue constituents, with special emphasis on membrane lipids. Electrosurgical methods employ electric current for the rapid heating and evaporation of tissue material and they are widely used both for dissection and coagulation on practically all fields of surgery. Hence, the direct combination of electrosurgery with mass spectrometry provides a tissue identification methodology, where the tissue manipulation part is already widely used by surgeons and fully approved from regulatory point of view. Electrosurgical methods are also employed on the field of endoscopy, both for coagulation and dissection. Combination of endoscopy with in-situ mass spectrometric tissue identification resulted in a diagnostic device which can potentially identify lesions in body cavities in-situ, in real-time.

Electrosurgical electrode assembly and ion transfer device were embedded into working channel of commercially available colonoscope. The device was coupled with a linear ion trap mass spectrometer, and the system was utilized during diagnostic colonoscopic interventions. Adenomae, adenocarcinomae and mucosal areas affected by inflammatory bowel diseases were successfully identified, in complete agreement with histopathological examination.

4:00pm IS+AS+BI+ET+GR+NS-TuA7 Nanocrystal Phase Transformations in ZBLAN Glass Ceramics, J.A. Johnson, University of Tennessee Space Institute, C. Alvarez, Northwestern University, Y. Lui, Argonne National Laboratory, C.E. Johnson, University of Tennessee Space Institute, A. Petford-Long, Argonne National Laboratory

In-situ and *ex-situ* TEM investigations of fluorochlorozirconate (FCZ) glass have led to the discovery of previously unreported BaF2 in the face-centered-cubic (FCC) and orthorhombic phases. These FCZ glasses are a class of material based on ZBLAN glasses, which are being developed for uses in advance mammography systems. The FCZs of interest have been doped with Eu (II) for use as either a scintillator or a storage phosphor material but need to be partially crystalline to show good optical properties. The photo-stimulated luminescence of this material, for use as storage phosphor, is attributed to the characteristic 5d-4f emission of Eu2+ present in the BaCl2 nanocrystals. The crystals formed are known from XRD experiments to be hexagonal and orthorhombic BaCl2 depending on the annealing temperature, 265 and 295°C respectively. *In-situ* and *ex-situ*TEM heating experiments were used to study the nucleation and growth process

of the nanocrystals at the EMC. The nanocrystals nucleate and grow through-out the glass matrix when annealing FCZ glasses, therein producing a nanocomposite glass-ceramic system. The traditional BaCl2 orthogonal phase in addition to the unreported FCC and orthogonal BaF2 phase have been found in multiple ZBLAN compositions in which the content of Cl and F has been varied. This indicates that annealing FCZ glasses produces polymorphic crystals of both BaCl2 and BaF2, which vary in size from 10 nm to 100 nm.

Mössbauer Spectroscopy has also given indisputable evidence that the divalent Europium enters the nanocrystals.

4:20pm IS+AS+BI+ET+GR+NS-TuA8 In Situ Microscopy of Organic Film Growth: Zn-Phthalocyanine on Ag(100), A. Al-Mahboob, J.T. Sadowski, Brookhaven National Laboratory

Metal phthalocyanines are attracting significant attention, owing to their potential for applications in chemical sensors, solar cells and organic magnets. As the electronic properties of molecular films are related to their crystallinity and molecular packing, the optimization of film quality is important for improving the performance of organic devices.

In this work, we studied the dynamics of nucleation and structural evolution of zinc-phthalocyanine (ZnPc) films on Ag(100) surface, employing realtime low-energy electron microscope (LEEM) complemented by DFT calculations. We have observed two different modes of ZnPc nucleation, depending on the growth temperature. At lower temperatures ZnPc nucleates in a double domain structure, with bulk-like square lattice similar to one reported by Dou et al. [2]. LEED patterns recorded in LEEM experiment show that ZnPc monolayer (ML) grows epitaxially, having a square lattice with $(4/3)\sqrt{(13)x(4/3)\sqrt{(13)R33.69^\circ}}$ unit cell (denoted R33.69) with respect to the substrate lattice. At temperatures of 170°C or above, nucleation of less dense epitaxial ZnPc, having single domain orientation, was observed, with square lattice parameters exactly 5 times larger (5x5) than the Ag(100) substrate.

Utilizing LEEM to observe the ZnPc nucleation at varying substrate temperatures - from room temperature (RT) to 225°C - we have observed that the nominal ZnPc coverage required for the onset of nucleation has strong temperature dependence. The nucleation commences at about 0.2 ML at RT, while 0.7 ML is required at 190°C. At the same time the completion of 1st layer occurs at constant nominal coverage of ZnPc, independent of substrate temperature. Based on that observation, the delay in onset of nucleation could be understood as a result of increased equilibrium concentration of diffusing ZnPc molecules at higher temperatures. This is in contrast to a delay in nucleation and giant island growth observed during vacuum deposition of anisotropic molecules like pentacene (Pn), in which case the energy barrier for the reorientation of the molecule from diffusing state into its crystalline orientation plays a critical role [3]. Real-time tracking of the evolution of ZnPc island area at varying deposition conditions combined with DFT analysis revealed that the 5x5 structure has both, a detachment barrier with respect to attachment, and a pre-factor (or attempt frequency), lower than those for bulk-like structures, allowing for controlling of the resulting ZnPc structure.

[1] E. Bauer, Rep. Prog. Phys. 57, 895 (1994).

[2] W. Dou et. al, J. Chem. Phys. 133, 144704 (2010).

[3] Al-Mahboob et al, Phys. Rev. B 82, 235421 (2010).

4:40pm IS+AS+BI+ET+GR+NS-TuA9 In Situ Sub-Micrometer Scale Chemical Imaging with Scanning Transmission X-ray Microscopy, S.T. Kelly, P. Nigge, Lawrence Berkeley National Laboratory, A. Laskin, B. Wang, Pacific Northwest National Laboratory, A. Tivanski, S. Ghorai, University of Iowa, T. Tyliszczak, M.K. Gilles, Lawrence Berkeley National Laboratory

Spatially resolved chemical information on length scales shorter than 50 nm has become crucial in many areas of science and engineering -- from analyzing the chemistry of geological and environmental samples to quantifying the detailed chemical structure of novel materials engineered on the nanoscale. Scanning transmission x-ray microscopy (STXM) allows collection of specific chemical speciation data on these length scales through the acquisition and analysis of near-edge x-ray absorption fine structure (NEXAFS) spectra at each image pixel. However, the full usefulness of the STXM instrument may ultimately be realized in the in situ analysis of chemical transformations by controlling the local sample environment.

In situ STXM/NEXAFS measurements have been made in several ways thus far, ranging from simple to very complex. Introducing gases directly into the microscope chamber is effective, yet the presence of the gas along the entire optical path of the x-rays reduces signal at the detector. Furthermore, gas choice with this configuration is limited to those compatible with the microscope components. Separate in situ reactor cells circumvent these limitations by confining the gaseous environment to a small region immediately around the sample. Several groups have used reactor cells to this end, with reactors ranging widely in complexity -- from simple cells with limited capability to complex systems which require substantial instrument reconfiguration.

Ideally, an in situ reactor for STXM should be capable, flexible, easy to install and configure, and easily fabricated. We have developed a gas phase STXM reactor cell to meet many of these requirements. The reactor mounts directly to the standard STXM sample mount (making installation relatively simple) and contains an integrated sensor to actively measure relative humidity inside the cell for experiments using water vapor. We present here recent results using the reactor cell to examine two different systems. In the first system, we observed the hygroscopic properties of mixed organic/inorganic aerosol particles at increasing levels of relative humidity. In the second system, we monitored carbon dioxide sorption in metal organic framework materials. The advantages afforded by this reactor (and future improvements to it) will enable new scientific discoveries across a wide range of fields.

5:40pm IS+AS+BI+ET+GR+NS-TuA12 *In Situ* SEM and ToF-SIMS Imaging of Liquids for Biological Applications, *L. Yang, X.-Y. Yu, Z. Zhu, S. Thevuthasan*, Pacific Northwest National Laboratory, *J. Cowin*, Cowin In-Situ Science, L. L. C.

A vacuum compatible microfluidic interface was developed to enable surface analysis of liquids. The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride membrane and polydimethylsiloxane; and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm silicon nitride membrane by using the focused ion beam/scanning electron microscope (FIB/SEM). Alternatively the primary Bi⁺ ions in ToF-SIMS can be used to fabricate the aperture window in real-time. New results using this vacuum interface and recent development will be presented in this paper. Several aqueous solutions containing conjugated IgG gold nanoparticles and representative biological solutions were studied in situ using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparisons were also made among wet and dry samples and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle conjugated antibodies are better made in their native liquid environment. Our unique microfluidic flow cell permits in situ liquid observations. In addition, a variety of aqueous solutions relevant to biological systems were analyzed. Our results indicate that chemical imaging by SEM and ToF-SIMS is applicable in analyzing more complicated aqueous solutions when coupled with our novel portable microfluidic platform.

Authors Index

Bold page numbers indicate the presenter

-A-Al-Mahboob, A.: IS+AS+BI+ET+GR+NS-TuA8, 2 Alvarez, C .: IS+AS+BI+ET+GR+NS-TuA7, 1 Balog, J.: IS+AS+BI+ET+GR+NS-TuA3, 1 – C – Castner, D.G.: IS+AS+BI+ET+GR+NS-TuA1, 1 Cowin, J.: IS+AS+BI+ET+GR+NS-TuA12, 2 — D — Desai, T.V.: IS+AS+BI+ET+GR+NS-TuA2, 1 — E — Engstrom, J.R.: IS+AS+BI+ET+GR+NS-TuA2, 1 – G -Ghorai, S.: IS+AS+BI+ET+GR+NS-TuA9, 2 Gilles, M.K.: IS+AS+BI+ET+GR+NS-TuA9, 2 Guallar-Hoyas, C .: IS+AS+BI+ET+GR+NS-TuA3, 1

— J — Johnson, C.E.: IS+AS+BI+ET+GR+NS-TuA7, 1 Johnson, J.A.: IS+AS+BI+ET+GR+NS-TuA7, 1 — K —

Kelly, S.T.: IS+AS+BI+ET+GR+NS-TuA9, 2 Kinross, J.: IS+AS+BI+ET+GR+NS-TuA3, 1

Laskin, A.: IS+AS+BI+ET+GR+NS-TuA9, 2 Lo, E.: IS+AS+BI+ET+GR+NS-TuA1, 1 Lui, Y.: IS+AS+BI+ET+GR+NS-TuA7, 1

— M — Muirhead, L.: IS+AS+BI+ET+GR+NS-TuA3, 1

— **N** — Nigge, P.: IS+AS+BI+ET+GR+NS-TuA9, 2 — **P** —

Petford-Long, A.: IS+AS+BI+ET+GR+NS-TuA7, 1

 — S —

Sadowski, J.T.: IS+AS+BI+ET+GR+NS-TuA8, 2 Sasi-Szabo, L.A.: IS+AS+BI+ET+GR+NS-TuA3, 1

Schafer, K.C.: IS+AS+BI+ET+GR+NS-TuA3, 1 Stein, M.J.: IS+AS+BI+ET+GR+NS-TuA1, 1 — T —

Takats, Z.: IS+AS+BI+ET+GR+NS-TuA3, **1** Thevuthasan, S.: IS+AS+BI+ET+GR+NS-TuA12, 2

Tivanski, A.: IS+AS+BI+ET+GR+NS-TuA9, 2 Tyliszczak, T.: IS+AS+BI+ET+GR+NS-TuA9, 2 — W —

Wang, B.: IS+AS+BI+ET+GR+NS-TuA9, 2 Waterton, C.: IS+AS+BI+ET+GR+NS-TuA1, 1 Woll, A.R.: IS+AS+BI+ET+GR+NS-TuA2, 1

— Y — Yang, L.: IS+AS+BI+ET+GR+NS-TuA12, 2 Yu, X.-Y.: IS+AS+BI+ET+GR+NS-TuA12, 2 — Z —

Zhu, Z.: IS+AS+BI+ET+GR+NS-TuA12, 2