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Graphene and Related Materials Focus Topic 
Room: 13 - Session GR+EM+NS+PS+SS+TF-MoM 

Graphene Growth 
Moderator: M. Spencer, Cornell University, V.D. Wheeler, 
U.S. Naval Research Laboratory 

8:20am  GR+EM+NS+PS+SS+TF-MoM1  Synthesis Ingredients 
Enabling Low Noise Epitaxial Graphene Applications, D.K. Gaskill, 
L.O. Nyakiti, V.D. Wheeler, U.S. Naval Research Lab, A. Nath, George 
Mason Univ., V.K. Nagareddy, Newcastle University, UK, R.L. Myers-
Ward, N.Y. Garces, S.C. Hernández, S.G. Walton, U.S. Naval Research 
Lab, M.V. Rao, George Mason Univ., A.B. Horsfall, Newcastle Univ., UK, 
C.R. Eddy, Jr., U.S. Naval Research Lab, J.S. Moon, HRL Labs LLC 
Sensors made from graphene flakes have demonstrated single molecule 
detection [Schedin et al., Nat Mat 6, 652 (2007) ]; this ultra-sensitivity is 
likely due to the high crystalline quality of the graphene and the associated 
relative lack of defects that give rise to noise. The low noise nature of high 
quality graphene should also facilitate other applications, e.g., low-noise 
amplifiers. Combined with the unique ambipolar property of graphene field 
effect transistors (FETs), the low noise character of graphene would 
significantly advance the performance of frequency multipliers, mixers and 
high-speed radiometers. To exploit these applications, high quality, 
reproducible wafer-scale epitaxial graphene (EG) with minimal thickness 
variations and defects are essential requirements. Here, crucial graphene 
synthesis elements required to achieve the wafer-scale quality goal are 
described. Understanding the effect of substrate misorientation as well as 
hydrogen etch and Si sublimation conditions for graphene synthesis on the 
(0001) SiC surface is essential to achieve improved and reproducible wafer-
scale graphene quality. For example, the impact of processing factors such 
as temperature control, laminar gas flow and substrate rotation on large area 
EG uniformity are described using examples created in an Aixtron SiC 
epitaxy reactor. In addition, managing SiC step formation on the nominal 
(0001) orientation is significant for achieving uniform EG thickness on 
terraces and to minimize additional growth at the step edges; this is 
illustrated using data from atomic force microscopy and scanning electron 
microscopy images in combination with Raman spectroscopy maps and x-
ray photoelectron spectroscopy analysis. Managing step formation 
combined with optimal growth leads to the suppression of the Raman defect 
“D” band confirming minimal grain boundaries and defects, which are 
additional sources of electronic noise. Lastly, contactless Lehighton 
resistivity maps of 75 mm wafers are used to illustrate the overall 
uniformity of optimally synthesized graphene as well as to show the re-
sistance state-of-the-art, with individual wafers exhibiting about a ±3% 
relative variation. Examples of the impact of this synthesis approach on 
chemical sensors devices and FETs will be shown, each exhibiting 1/f noise 
behavior down to 1 Hz and possessing noise spectral densities similar to 
reports from exfoliated graphene. Hence, careful control of EG formation 
across the wafer results in improved quality which subsequently leads to the 
reduction or elimination of additional noise sources from graphene defects 
that would then adversely affect device performance. 

8:40am  GR+EM+NS+PS+SS+TF-MoM2  Growth of Graphene by 
Catalytic Decomposition of Ethylene on Cu(100) and Cu(111) With and 
Without Oxygen Predosing, Z.R. Robinson, P. Tyagi, T. Mowll, C.A. 
Ventrice, Jr., University at Albany- SUNY, K. Clark, A.-P. Li, Oak Ridge 
National Laboratory 
Graphene growth on Cu substrates has become one of the most promising 
techniques for the mass production of graphene, and therefore significant 
effort has been put into developing growth conditions that lead to large area, 
defect and grain boundary free graphene films. One key consideration is the 
influence that the underlying copper substrate has on the growth of the 
graphene. In order to study this, graphene growth on Cu(100) and Cu(111) 
was carried out in a UHV system. The samples were heated using an 
oxygen series button heater. The hydrocarbon pressure was measured using 
a capacitive manometer instead of an ion gauge, which could cause 
dissociation of the hydrocarbon molecules. Initially, it was found that 
annealing the crystals to 900 °C resulted in impurity segregation at the 
surface. Several cycles of sputtering at 600 °C were required to remove all 
bulk impurities so that the surface remained clean even after annealing to 
900 °C. Initial attempts to grow graphene by annealing each crystal to 
temperatures as high as 900 °C in UHV, followed by backfilling the 
chamber with up to 5 x 10-3 torr of C2H4 did not result in graphene 
formation. It was found that by first backfilling the chamber with C2H4 and 
then raising the temperature from 25 °C to 800 °C, graphene growth could 

be achieved. A four-domain epitaxial overlayer is observed for the Cu(100) 
surface. Pre-dosing the Cu(100) with oxygen at 300 °C, which forms a 
saturation coverage of chemisorbed oxygen, was found to result in a 2-
domain graphene overlayer using similar growth conditions. A study of the 
effect of oxygen pre-dosing on the growth of graphene on Cu(111) has been 
initiated.  

9:00am  GR+EM+NS+PS+SS+TF-MoM3  Impact of Growth 
Parameters on Uniformity of Epitaxial Graphene, L.O. Nyakiti, V.D. 
Wheeler, R.L. Myers-Ward, J.C. Culbertson, U.S. Naval Research 
Laboratory, A. Nath, George Mason University, N.Y. Garces, U.S. Naval 
Research Laboratory, J. Howe, Oak Ridge National Laboratory, C.R. Eddy, 
Jr., D.K. Gaskill, U.S. Naval Research Laboratory 
Epitaxial graphene (EG) offers a facile method for attaining large area 
graphene for device applications. Since wafer uniformity and thickness 
control is vital, a systematic study of the parameters affecting the EG 
growth process was performed and the optimal conditions for obtaining 
uniform morphology and high electronic quality were determined. EG was 
synthesized in a low pressure Ar flowing ambient on 8x8mm2 6H-
SiC(0001) substrates that were offcut 0.8o from the basal plane, using an 
Aixtron VP508 reactor. The samples were placed on a rotating ~100 mm 
diameter susceptor and excellent EG layer uniformity and run-to-run 
reproducibility were obtained. The investigation focused upon the critical 
synthesis parameters of temperature (T) (1520-1660oC) and time (t) (15-60 
min), an in-situ H2 etch conditions (1520-1600oC for 10-30min). 
Morphology, layer thickness, chemical analysis, and strain variations across 
the samples were characterized using electron microscopy, AFM, XPS and 
µ-Raman spectroscopy. Large-area van der Pauw Hall effect was performed 
to quantify the graphene mobility (µ), and carrier density. Results show that 
growth T and t had the most significant impact on EG electronic and 
morphological properties. For example, synthesis at 1660oC for 30min 
resulted in 4-8 monolayers (ML) and a step-bunched morphology with high 
concentration of wrinkles originating from the step-edge and pinned at the 
nearest terrace edge. Other morphological features were pits primarily 
located at the step edges having a depth ~20nm and density 6.4x106 cm-2. In 
contrast, EG synthesis at 1520oC for 30min results in uniform ML coverage 
along the terrace width that is devoid of pits and wrinkles. Mobility was 
found to have a drastic dependence on graphene thickness. Under optimal 
conditions, 1-2 ML were obtained and µ as high as 1240 cm2V-1s-1 was 
achieved; in contrast, for EG with >2 ML µ ~ 550 cm2V-1s-1, presumably 
due to interlayer interaction and electronic screening. XPS C1s and Raman 
2D spectra of EG grown on substrates after undergoing in-situ H2 etch at 
different times did not show shifts in peak position/intensity suggesting lack 
of etch time dependence on EG electronic or structural quality. Yet etch 
conditions affect the final morphology, as EG synthesis performed after an 
in-situ H2 etch at 1600oC resulted in step-bunched morphology with step 
heights 5-10nm, whereas, substrates etched at 1520oC had EG with step-
heights 10-15nm. In addition other growth parameters investigated were 
found to be of secondary importance, including: Ar pressure, flow rates, and 
sample cool down conditions. 

9:20am  GR+EM+NS+PS+SS+TF-MoM4  Uniform Epitaxial Growth of 
Charge Neutral Quasi-Free-Standing Monolayer Graphene on a 6H-
SiC(0001) Surface by Combination of Metal Silicidation and 
Intercalation, H. Shin, I. Song, C.-Y. Park, J.R. Ahn, Sungkyunkwan 
University, Republic of Korea 
Intrinsic high mobility of graphene are much reduced in graphene devices 
by various factors. Two critical factors degrading mobility are uniformity in 
an atomic structure such as number of a layer and an interaction with a 
substrate. Recently Shuai-Hua Ji et al. reported quantitatively that 
conductivity is much reduced by one sixth when electrons pass through a 
boundary between monolayer and bilayer graphene at a step edge in 
comparison to conductivity of monolayer graphene. This suggests that 
uniformity of number of graphene layer is a more crucial factor than 
expected. In particular, in epitaxial graphene on SiC, the uniformity of 
number of layer is an intrinsic and serious problem because Si is more 
rapidly sublimated near a step edge in the formation of epitaxial graphene 
by thermal evaporation of Si and, subsequently, epitaxial graphene with 
different layers coexists intrinsically on a terrace. Another factor degrading 
mobility is an interaction between graphene and a substrate. In epitaxial 
graphene, the interaction was reduced by intercalation of metal or molecule 
such as H, F, and Au between graphene and a substrate, which results in 
quasi freestanding graphene. Various charge neutral quasi freestanding 
graphene has been reported, but the charge neutrality was found at an 
optimal coverage of an intercalated element and annealing temperature. 
This makes it difficult to achieve spatially homogeneous charge neutrality 
of quasi freestanding graphene, and a method with a broad range of 
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coverage and temperature is demanded. We demonstrate that charge neutral 
quasi freestanding monolayer graphene can be grown uniformly without 
coexistence of a buffer layer and a bilayer graphene which limit mobility of 
epitaxial monolayer graphene. Because coexistence of two different phases 
is inevitable on a SiC surface, uniform monolayer graphene was produced 
based on two different phases, a Si-rich phase and a C-rich phase called a 
buffer. Pd was deposited on both the Si-rich and C-rich phases and annealed 
up to 900°C. The Si-rich phase produced Pd silicide and charge neural quasi 
freestanding monolay graphene was produced on the Pd silicide while, on 
the C-rich phase, Pd was intercalated between the buffer layer and SiC 
resulting in charge neutral quasi freestanding monolayer graphene, where 
the quasi freestanding monolayer graphene on two difference regions was 
connected atomically. The combination of Si silicidation and intercalation 
result in uniform charge neutral quasi freestanding uniform monolayer on a 
SiC surface, where the electronic and atomic structures were observed using 
angle-resolved photoemission spectroscopy and scanning tunneling 
microscopy. 

9:40am  GR+EM+NS+PS+SS+TF-MoM5  Epitaxial Graphene on 
Ir(111) - A Playground for the Fabrication of Graphene Hybrid 
Materials, T.W. Michely, Universität zu Köln, Germany INVITED 
Carefully optimizing the growth of graphene on Ir(111) yields a virtually 
defect free, weakly bound epitaxial monolayer ranging from quantum dot 
sizes to macroscopic extension. In the talk I will show how this system can 
be used to construct new types of graphene based materials. Specifically, 
patterned adsorption of transition metals results in dense cluster arrays with 
exciting magnetic and catalytic properties. Intercalation underneath the 
graphene allows one to manipulate the properties of graphene itself, e.g. its 
ability to adsorb atoms and molecules as well as its magnetism. 

10:40am  GR+EM+NS+PS+SS+TF-MoM8  Graphene Growth Studied 
with LEEM, PEEM, EELS, ARPES, MEIS, and STM, R.M. Tromp, J.B. 
Hannon, M.W. Copel, S.-H. Ji, F.M. Ross, IBM T.J. Watson Research 
Center INVITED 
We have studied the growth of graphene on a variety of substrates, 
including SiC (both Si and C terminated), polycrystalline Cu and Ni foils, 
as well as single-crystal Ni foils. Low Energy Electron Microscopy (LEEM) 
and Photo Electron Emission Microscopy (PEEM) offer the unique 
opportunity to follow the growth in real time, as it proceeds at high 
temperature, and in the presence of processing gases such as disilane (for 
growth on SiC) or ethylene (for growth on the metal substrates). Low 
Energy Electron Diffraction (LEED) allows us to determine 
crystallographic orientations as well as atomic structure of areas well below 
a micrometer in extent. Information on electronic structure can be obtained 
from the plasmon loss features using Electron Energy Loss Spectroscopy 
(EELS), or from Angle Resolved Photo Electron Spectroscopy (ARPES). 
These spectroscopic experiments are carried out in the LEEM/PEEM 
microscope using an in-line energy filter with which energy and angle 
resolved analysis of the electrons can be performed on selected areas. 
Finally, to obtain information on the layer-by-layer evolution of the 
graphene films, particularly on SiC, we have used isotope sensitive Medium 
Energy Ion Scattering (MEIS), to follow the growth by thermal 
decomposition of 12C vs 13C graphene monolayers from a three-bilayer thick 
Si13C homoepitaxial film grown on a SiC substrate. Taken together, these 
results provide a comprehensive view of the growth of graphene films. In 
this talk, we will review the most salient results of these studies, and their 
relevance to the use of graphene films for electronic applications. To 
address the latter, we will discuss the results of three-probe STM 
experiments in which we measured the excess resistivity of a graphene 
sheet as it crosses an atomic step of the underlying substrate. 

11:20am  GR+EM+NS+PS+SS+TF-MoM10  Spatial Confinement of 
Epitaxy of Graphene on Microfabricated SiC to Suppress Thickness 
Variation, H. Fukidome, T. Ide, H. Handa, RIEC, Tohoku Univ., Japan, Y. 
Kawai, Tohoku Univ., Japan, F. Fromm, Univ. Erlange-Nürnberg, 
Germany, M. Kotsugi, T. Ohkouchi, JASRI/SPring-8, Japan, H. Miyashita, 
Tohoku Univ., Japan, Y. Enta, Hirosaki Univ., Japan, T. Kinoshita, 
JASRI/SPring-8, Japan, Th. Seyller, Univ. Erlange-Nürnberg, Germany, M. 
Suemitsu, RIEC, Tohoku Univ., Japan 
Epitaxial graphene on SiC (EG) is promising owing to a capability to 
produce high-quality film on a wafer scale [1]. One of the remaining issues 
is microscopic thickness variation of EG near surface steps, which induces 
variations in its electronic properties and device characteristics. To suppress 
the variation, spatial confinement of surface reactions is effective. The 
spatial confinement using substrate microfabrication, for instance 
homoepitaxy and sublimation on microfabricated Si substrates, can induce 
self-ordering of steps, and even produce step-free surfaces [2]. The spatial 
confinement is therefore anticipated effective to obtain EG without the 
thickness variation. 

We have for this reason applied the spatial confinement to the epitaxy of 
graphene on 6H-SiC(0001). For the spatial confinement, 6H-SiC(0001) 
substrates were microfabricated by using electron beam lithography and fast 
atomic beam etching using sulfur hexafluoride [3, 4]. Epitaxial graphene on 
the microfabricated 6H-SiC(0001) substrates was obtained by annealing at 
1923 K in Ar ambience [2]. It is verified by using low energy electron 
microscopy (LEEM) and photoemission electron microscopy (PEEM) that 
step-free SiC surface and EG without thickness variation can be formed on 
smaller patterns [4]. This result clearly demonstrate that the spatially 
confinement is effective for the epitaxy of graphene on SiC. Furthermore, 
Raman spectroscopy and LEEM reveals that the spatial confinement can 
suppress the fluctuations of the electronic properties, e.g. (unintentional) 
doping in EG [4]. 

In conclusion, we have demonstrated that the spatial confinement of EG is 
effective to control both structural and electronic properties. This novel 
technique can boost the development of electronic devices based on EG. 
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11:40am  GR+EM+NS+PS+SS+TF-MoM11  Three-Dimensional 
Graphene Architecture Growth and Its Facile Transfer to Three-
Dimensional Substrates, J.-H. Park, Sungkyunkwan University, Republic 
of Korea, H.-J. Shin, J.Y. Choi, Samsung Advanced Institute of 
Technology, Republic of Korea, J.R. Ahn, Sungkyunkwan University, 
Republic of Korea 
Recent development of large area graphene synthesis on metal layer by 
chemical vapor deposition (CVD) or epitaxial growth on silicon carbide 
(SiC) opened the possibility for applications such as transparent electrodes 
for ITO replacement. For instance, graphene has been demonstrated for use 
in a liquid crystal display (LCD) and/or organic light emitting diode 
(OLED) test cell as a bottom electrode. However, the actual device, e.g., an 
active-matrix (AM) LCD, operates by switching individual elements of a 
display, using a thin-film transistor (TFT) for each pixel. Here, the pixel 
electrode of a display should extend down to the transistor’s source or drain, 
thereby making contact with a via hole, which demands that a three-
dimensional (3D) architecture electrode be deposited on a flat surface as 
well as its side walls. Although large-area graphene growth can be applied 
for a wide range of applications, 3D graphene architecture growth has not 
been realized for actual devices due to the original limitation of planar 
graphene growth. Herein, we demonstrate for the first time 3D graphene 
architecture growth and its facile transfer to a planar and/or 3D substrate. 
To prevent agglomeration of nano-scale metal catalyst by the CVD process, 
we chose a SiC system. Graphene, a few layers thick, was epitaxially grown 
on a pre-patterned SiC substrate with nano-size thickness which was 
produced by photolithography and dry etching. Graphene on a vertical facet 
of the SiC pattern with a few-hundred nanometers in height was perfectly 
prepared using this approach, contrary to the CVD method. Furthermore, 
we suggest the use of a facile transfer method of graphene on SiC to a SiO2 
substrate using thermal release tape after hydrogen intercalation. In spite of 
the troublesome transfer issue of SiC, the geometry of the 3D graphene was 
perfectly transferred onto the planar SiO2 as well as the 3D SiO2 structure. 
In other words, the 3D graphene architecture was maintained as a floating 
cap structure on planar SiO2 and the vertical facet of the 3D SiO2 structure 
was well covered. Moreover, the graphene bottom layer without a 3D cap 
and the inverted bowl structure in the 3D graphene architecture were 
selectivly transferred by controlling intercalation and pressure. These 
approaches could provide a beneficial method for preparing a 3D graphene 
architecture as well as for modifying the ordered structure to be utilized in 
real devices. 
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