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2:00pm  GR+EM+ET+NS+TF-MoA1  Influence of Substrate Offcut on 
Electrical and Morphological Properties of Epitaxial Graphene, R.L. 
Myers-Ward, V.D. Wheeler, L.O. Nyakiti, T.J. Anderson, F.J. Bezares, J.D. 
Caldwell, A. Nath, N. Nepal, C.R. Eddy, Jr., D.K. Gaskill, U.S. Naval 
Research Laboratory 
The promise of graphene-based device technologies is critically dependent 
on uniform wafer-scale graphene films and is most directly met through 
epitaxial graphene (EG) growth on silicon carbide (SiC) substrates. An 
essential parameter which influences this uniformity is the substrate offcut, 
as any deviation will result in a local change in the terrace width, impacting 
the growth rate and step-bunched heights observed after EG formation. For 
nominally on-axis SiC substrates, typical offcuts can range from ~0° to ~1° 
off-axis toward the [11-20] direction. Offcuts approaching 0° produce wide 
terraces with short step-bunched heights which offers the possibility of 
reduced anisotropy of transport properties [M. Yakes, et al., Nano Lett. 
10(5), 1559 (2010)] and improved EG layer uniformity. Thus, it is of 
interest to understand the influence of substrate offcut on carrier mobility, 
surface morphology, step heights, and graphene growth rate. This study 
investigates EG grown on a unique single 3-inch substrate possessing a 
large variation in offcut, from +0.1 to -1° toward the [11-20] direction, 
enhancing the information obtained on offcut influence while eliminating 
other substrate influences. X-ray diffraction rocking curve and peak 
position maps of the (0012) reflection were performed prior to growth to 
evaluate the crystalline quality and local offcut, respectively. Electron 
mobilities of EG films were determined by van der Pauw Hall 
measurements. Surface morphology of the EG was investigated with 
scanning electron microscopy, while the step heights and terrace widths 
were measured using atomic force microscopy. 

For a given set of conditions (1620°C for 30 min in 10 slm Ar), the EG 
morphology is dominated by straight steps that become wavy in character as 
the offcut decreases to zero degrees. Close to zero degrees, the step 
direction rotates from [11-20] to the [1-100] direction and the steps become 
further distorted. The step bunch heights generally decreased (from 8 to 3 
nm) as the offcut decreased and the terrace widths increased (from 0.3 to ~3 
µm); however, for the latter, the trend is interrupted near zero degrees 
offcut. In addition to such morphological assessments, the impact of growth 
parameters, where the growth temperatures investigated were 1540, 1580 
and 1620 °C and growth times were 15, 30 and 45 min, on the electrical and 
structural properties of EG grown on this unique substrate will be reported. 
For example, samples grown at 1540 °C for 30 min on witness substrates 
with offcuts ranging from ~ 0.4 to 0.9° had large area mobilities ranging 
from 780 to 1100 cm2/Vs, where larger offcuts led to lower mobilities. 

2:20pm  GR+EM+ET+NS+TF-MoA2  Direct Determination of 
Dominant Scatterer in Graphene on SiO2, J. Katoch, D. Le, T.S. 
Rahman, M. Ishigami, University of Central Florida 
Freely suspended graphene sheets display high-field effect mobility, 
reaching 2´105 cm2/V s. Yet, suspended graphene sheets are fragile and 
impractical for most experiments and applications. Graphene sheets on 
SiO2 are easier to handle but possess low-carrier mobilities, which can vary 
by an order of magnitude from sample to sample. Poor and unpredictable 
transport properties reduce the utility of SiO2-bound graphene sheets for 
both fundamental and applied sciences. Therefore, understanding the impact 
of substrates is crucial for graphene science and technology. 

  

We have measured the impact of atomic hydrogen with kinetic energy less 
than 250 meV on the transport property of graphene sheets as a function of 
hydrogen coverage and initial, pre-hydrogenation field-effect mobility. The 
saturation coverages for different devices are found to be proportional to 
their initial mobility, indicating that the number of native scatterers is 
proportional to the saturation coverage of hydrogen. In order to understand 
this correlation between the field effect mobility and the apparent affinity of 
atomic hydrogen to graphene, we have performed a detailed temperature 
programmed desorption study on hydrogen-dosed graphene sheets. Atomic 
hydrogen is found to physisorb on graphene with activation energy for 
desorption of 60 ± 10 meV, consistent with our theoretical calculations. The 
associated charge transfer expected for such small desorption energy 
indicates that atomic-scale defects and ripples are not responsible for 

determining the mobility of graphene on SiO2 and that charged impurities 
in substrates define the transport property of graphene on SiO2. 

  

1. J. Katoch, J.H. Chen, R. Tsuchikawa, C. W. Smith, E. R. Mucciolo, and 
M. Ishigami, Physical Review B Rapid Communications, 82, 081417 
(2010). 

  

  

  

2:40pm  GR+EM+ET+NS+TF-MoA3  Tuning Electronic Properties of 
Graphene by Controlling its Environment, K.I. Bolotin, Vanderbilt 
University INVITED 
Every atom of graphene, a monolayer of graphite, belongs to the surface. 
Therefore, the environment of graphene -- the substrate onto which 
graphene is deposited and any coating on top of graphene -- intimately 
affects the properties of graphene. In this talk, we demonstrate that both the 
mechanical and electrical properties of graphene can be tuned by varying its 
environment.  

First, we discuss the dependence of electrical transport in graphene on the 
dielectric constant (k) of graphene’s environment. For graphene in vacuum 
(k=1) we observe very strong electron-electron interactions leading to 
robust fractional quantum Hall effect at temperatures up to 15K. By 
suspending graphene in liquids, we explore the regime of dielectric 
constants between ~1.5 and ~30. We observe the dependence of carrier 
scattering in graphene on k and demonstrate large values for room 
temperature mobility (>60,000 cm2/Vs) in ion-free liquids with high k. We 
also explore the rich interplay between the motion of ions inside liquids and 
transport of electrons in graphene. We observe signatures due to streaming 
potentials and Coulomb drag between ions in the liquid and electrons in 
graphene. 

We also briefly address the mechanical properties of graphene and their 
dependence on graphene’s environment. We demonstrate that the built-in 
strain, the substrate adhesion force and even the thermal expansion 
coefficient of graphene depend on the substrate supporting graphene. 

3:40pm  GR+EM+ET+NS+TF-MoA6  Study of Impurity-Induced 
Inelastic Scattering on Suspended Graphene by Scanning Confocal 
Micro-Raman Spectroscopy, L.W. Huang, C.S. Chang, Academia Sinica, 
Taiwan, Republic of China 
We utilized a polymer-based procedure to transfer the CVD-grown 
graphene onto a TEM copper grid. The heat treatment was performed on the 
graphene membrane in an argon/ hydrogen (Ar/H2) atmosphere at 400 . 
After the transfer and heat treatment, TEM images, acquired by an ultra-
high-vacuum transmission electron microscopy (UHV-TEM), demonstrated 
areas with distinguishable impurity distribution on the suspended graphene 
membrane. These areal impurity distributions can also be mapped by the 
scanning Raman spectroscopy correspondingly, indicating the influence of 
impurity-induced inelastic scattering. The results of this experiment show 
that the intensity ratio of Raman spectra 2D band over G band (I2D/IG) is 
proportional to minus fourth power of the inelastic scattering rate. 

4:00pm  GR+EM+ET+NS+TF-MoA7  The Adsorption of Molecules 
with Large Intrinsic Electrostatic Dipoles on Graphene, L. Kong, Univ. 
of Nebraska-Lincoln, G.J. Perez Medina, Univ. of Nebraska-Lincoln, Univ. 
of Puerto Rico, J. Colón Santana, Univ. of Nebraska-Lincoln, L. Rosa, 
Univ. of Nebraska-Lincoln, Univ. of Puerto Rico, L. Routaboul, P. 
Braunstein, Maître de conférences de l'Université de Strasbourg, France, B. 
Doudin, Institut de Physique et Chimie des Matériaux de Strasbourg, 
France, C.-M. Lee, J. Choi, Kyung Hee Univ., Korea, P.A. Dowben, Univ. 
of Nebraska-Lincoln 
Both gold and graphene are excellent conductors, and one might expect that 
both conductors would fully screen the photoemission and inverse 
photoemission final states of a molecular adsorbate, but in fact this is not 
the case. The comparison of the electronic structure of p-quinonoid 
zwitterionic type molecules with a large intrinsic dipole of 10 Debyes 
adsorbed on both gold and graphene on copper substrates, shows that the 
interaction between the adsorbate molecules and graphene is very weak, 
confirming that graphene is chemically inert. We find that the 
photoemission and inverse photoemission final states are well screened for 
p-quinonoid zwitterionic dipolar molecules on gold. This is not observed in 
the case of this quinonoid zwitterion adsorbed on graphene on copper. This 
weaker screening is evident in a larger highest occupied molecular orbital to 
lowest unoccupied molecular orbital gap for the molecules on graphene. 
The larger highest occupied molecular orbital to lowest unoccupied 
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molecular orbital gap for the molecules on graphene indicates that a much 
weaker screening on the photoemission and inverse photoemission final 
states for these dipolar molecules on graphene than that on gold. This work 
is reviewed in the context of other studies of molecular adsorption on 
graphene. 

4:20pm  GR+EM+ET+NS+TF-MoA8  Growth of and Interactions in 
Epitaxial Graphene Layers, A. Bostwick, Lawrence Berkeley National 
Laboratory, A. Walter, Th. Seyller, Lawrence Livermore National 
Laboratory, K. Horn, E. Rotenberg, Lawrence Berkeley National 
Laboratory INVITED 
The electronic properties of graphene has been investigated using angle-
resolved photoemission spectroscopy at the MAESTRO* facility of the 
ALS** synchrotron in Berkeley, California. This laboratory is unique in its 
ability to grow sophisticated samples for in situ study using angle-resolved 
photoemission spectroscopy, and to subtly alter their properties by 
engineering their surfaces by chemical doping or thickness control. In this 
talk I will discuss the electronic properties of graphene, focusing on the role 
of dopants to control the charge density and as defects to disrupt the 
metallic conduction. By measuring the spectrum of “plasmaronic” 
quasiparticle excitations, we can demonstrate the scale-free nature of the 
Coulomb interaction in Dirac systems. Such effects are readily observed on 
quasi-free standing graphene samples doped with long-range scatterers. 
Doping with short-range scatterers, on the other hand, results in a loss of 
conduction which we interpret as a manifestation of strong (Anderson) 
localization.  

*Microscopic and Electronic Structure Observatory 

**Advanced Light Source 

5:00pm  GR+EM+ET+NS+TF-MoA10  Squeezing of the Graphene 
Dirac Cone Observed by Scanning Tunneling Spectroscopy, J. Chae, S. 
Jung, Y. Zhao, N.B. Zhitenev, J.A. Stroscio, Center for Nanoscale Science 
and Technology / NIST, A. Young, C. Dean, L. Wang, Y. Gao, J.C. Hone, 
K.L. Shepard, P. Kim, Columbia University 
The single-particle spectrum of graphene is described by massless Dirac 
quasiparticles with a linear energy-momentum dispersion relation. In this 
talk I examine the effect of electron interactions on the graphene energy 
dispersion as a function of both excitation energy E away from the Fermi 
energy and density n. To analyze the dispersion, we measure the Landau 
levels (LLs) in graphene on a hexagonal boron nitride (hBN) insulator in 
low magnetic fields by scanning tunneling spectroscopy. The experiments 
were performed in a custom designed cryogenic scanning tunneling 
microscope system operating at 4 K with applied magnetic fields from 0 T 
to 8 T. The graphene devices were fabricated by the method detailed in 
Dean et al. [1]. The disorder in graphene on hBN is reduced in comparison 
with the previous measurements in graphene on SiO2 [2] allowing us to 
observe the LLs in fields as low as 0.5 T. By fitting the LL energies 
obtained at constant density, we find that the energy dispersion remains 
linear, characterized by a momentum-independent renormalized velocity. 
However, the renormalized velocity is density dependent, showing a strong 
increase as the charge neutrality point is approached. The overall spectrum 
renormalization can be described as a squeezing of the Dirac cone angle due 
to electron-electron interactions at low densities. Interestingly, we also find 
that the renormalization of the dispersion velocity is affected by the local 
disorder potential and magnetic field, which is not described by current 
theory.  

[1]. C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. 
Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature 
Nanotech. 5, 722–726 (2010).  

[2]. S. Jung, G. M. Rutter, N. N. Klimov, D. B. Newell, I. Calizo, A. R. 
Hight-Walker, N. B. Zhitenev, and J. A. Stroscio, Nature Phys. 7, 245–251 
(2011).  

5:20pm  GR+EM+ET+NS+TF-MoA11  Interfacial Interaction of 
Graphene and Metal Surfaces Investigated by Resonant Inelastic X-ray 
Scattering, L. Zhang, University of Science and Technology of China, 
Advanced Light Source, J.H. Guo, Advance Light Source, J.F. Zhu, 
University of Science and Technology of China 
The synthesis of graphene on metal surfaces by chemical vapor deposition 
(CVD) is the most promising method to prepare single-layer and large-area 
graphene, which is a prerequisite for the fabrication of graphene-based 
electronic devices. Therefore, the graphene/metal interfaces have attracted 
much attention due to their importance in graphene synthesis by CVD 
processes. In this presentation, we report our recent studies on the electronic 
structure and band dispersion of graphene on different metal surfaces (Cu, 
Ir and Ni) by the means of X-ray absorption spectroscopy (XAS), X-ray 
emission spectroscopy (XES) and resonant inelastic X-ray scattering 
(RIXS). The XAS spectra for graphene on metal surfaces show strong π* 

and σ* resonant features, indicating that the single-layer graphene films 
preserve the intrinsic symmetry of graphite. The resonant XES spectra of 
graphene on different metal surfaces change dramatically, especially for the 
features of π* resonances, which can be directly related to the different 
strength of hybridization between graphene and metal substrates. These 
significant spectra changes have been proved to be an effective measure for 
the bonding strength of graphene on different substrates: strong band 
dispersion can be observed when the interaction between graphene and 
metal substrate is weak (such as Cu), while the band dispersion is seriously 
disturbed when a strong hybridization between graphene and metal 
substrate (such as Ni) exists. These results provide basic understanding of 
graphene/metal interfacial interaction, which helps to develop graphene-
based electronic devices with high performances. 
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