Thursday Afternoon Poster Sessions

Electron Transport at the Nanoscale Focus Topic Room: Central Hall - Session ET-ThP

Electron Transport at the Nanoscale Poster Session

ET-ThP1 The Performance of Organic Light-Emitting Diodes with Rb₂CO₃-doped Alq₃Layer for Improving Carrier-Injecting Probability, *J.W. Park, J.T. Lim, J.S. Oh, G.Y. Yeom*, Sungkyunkwan University, Republic of Korea

Organic light-emitting diodes (OLEDs) is strongly influenced by both the injection barrier height and the number of carriers in the metal/organic contact formed between the Fermi levels (EF) of the electrodes and the relevant levels for conduction in the OLED.

In this study, this study elucidates the enhancement of the optoelectronic properties of OLEDs by n-doping effect of rubidium carbonate (Rb₂CO₃)doped tris(8-quinolinolato)aluminum (III) (Alq₃). The device performance strongly depends on both doping concentrations of the Rb₂CO₃-doped Alq₃ layer and the thickness. As the doping concentration is increased from 2.5% to 50%, the electron ohmic properties of the electron-only device with the glass/ITO/ Rb₂CO₃-doped Alq₃ (10 nm)/Al structure were improved at doping concentration of 10%, due to the increase in the n-type doping effect. However, the Alq₃ molecules were decomposed above the doping concentration of 10%. Also, the photoemission spectra revealed that the ntype doping effect cause the lowering of the electron-injecting barrier height, as well as the improvement of the electron conductivity. The OLED with the glass/ITO/MOOX-doped NPB (25%, 5 nm)/NPB (63 nm)/Alq₃ (32 nm)/ Rb₂CO₃-doped Alq₃ (10%, 10 nm)/Al (100 nm) structure showed both a high maximum luminance of 114,400 cd/m2 at 9.8 V and a high power efficiency of 2.7 lm/W at about a luminance of 1000 cd/m2.

Authors Index

Bold page numbers indicate the presenter

— L —
Lim, J.T.: ET-ThP1, 1
-0-
Oh. J.S.: ET-ThP1. 1

P — P —
Park, J.W.: ET-ThP1, 1
— Y —
Yeom, G.Y.: ET-ThP1, 1

Author Index 2