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8:20am  EL+TF+AS+EM+SS+PS+EN+NM-MoM1  Multichannel 
Spectroscopic Ellipsometry: Applications in I-III-VI2 Thin Film 
Photovoltaics, R.W. Collins, D. Attygalle, P. Aryal, P. Pradhan, N.J. 
Podraza, University of Toledo, V. Ranjan, S. Marsillac, Old Dominion 
University INVITED 
Multichannel spectroscopic ellipsometry (SE) has been applied successfully 
as an in situ, real time tool for optimizing, monitoring, and controlling 
multi-stage deposition processes in various thin film photovoltaics (PV) 
technologies. A particularly challenging process optimization problem 
involves the thermal co-evaporation of individual elements of Cu, In, Ga, 
and Se in a three-stage process, which has proven to produce high quality 
Cu(In1-xGax)Se2 (CIGS) materials and high performance PV devices. This 
three-stage process provides a high level of flexibility in determining the 
phase, composition, and microstructure of the film, but also generates 
greater challenges in run-to-run reproducibility of the optimized process. 
Information extracted from real time SE measurements includes the 
evolution of the bulk layer and one or more surface layer thicknesses, as 
well as layer dielectric functions. The layer dielectric functions can be 
analyzed further to extract the phase and alloy compositions and the defect 
density or grain size, which can assist in understanding the fabrication 
process, in optimizing solar cells, and ultimately in monitoring and 
controlling the optimized process for improved reproducibility. In this 
study, the focus is on analysis of ellipsometric (ψ, Δ) spectra acquired by 
real time SE in order to characterize (i) the structural and compositional 
evolution in (In,Ga)2Se3 film growth from In, Ga, and Se fluxes in the first 
stage, (ii) the transition from Cu-poor to Cu-rich CIGS at the end of the 
second stage, which occurs under Cu and Se fluxes, and (iii) the transition 
from Cu-rich to the desired Cu-poor CIGS, which defines the end of the 
third and final stage, and occurs under a second application of In, Ga, and 
Se fluxes. After the transition from Cu-poor to Cu-rich material in the 
second stage, a Cu2-xSe phase near the surface of the bulk layer is tracked. 
In the Cu-rich to Cu-poor transition, this Cu2-xSe phase has fully reacted 
with In, Ga, and Se to form CIGS. Studies using a standard Mo substrate 
and 2 μm thick CIGS for solar cells have also revealed features in the (ψ, Δ) 
spectra characteristic of the anticipated changes in the near surface phase 
composition as established by detailed modeling on thinner and smoother 
films. Although careful analysis of real time SE is expected to provide 
quantitative information on the surface properties and their evolution in this 
case of solar cells, control of the deposition has been successful simply by 
monitoring real time changes in the ellipsometric (ψ,Δ) spectra. 

9:00am  EL+TF+AS+EM+SS+PS+EN+NM-MoM3  Contribution of 
Plasma Generated Nanoparticles to the Growth of Microcrystalline 
Silicon Deposited from SiF4/H2/Argon Gas Mixtures, J.-C. Dornstetter, 
S. Kasouit, J.-F. Besnier, Total S.a, France, P. Roca i Cabarrocas, LPICM-
CNRS, Ecole Polytechnique, France 
Despite the low fabrication cost of thin film silicon solar modules, this type 
of technology remains non competitive in main stream markets because of 
the high BOS costs, due to the low energy conversion efficiency of this type 
of modules (~10%).We have recently shown that microcrystalline silicon 
films deposited using SiF4/H2/Argon RF capacitive plasmas have excellent 
structural and transport properties, compared to films deposited using 
conventional SiH4/H2 mixtures, allowing for a very good carrier collection, 
even for thick cells, and Voc values of 0.55 V, without device optimization, 
thus opening up the path for the realization of high performance solar cells. 
However, little is known so far about the growth mechanism of this type of 
materials and the reason for such interesting properties.Studies of silicon 
thin films deposition from SiF4/H2 mixes, under conditions different from 
ours, suggested that the growth is due to the deposition of SiF2 radicals, 
followed by the abstraction of fluorine by hydrogen. Previous work within 
our group has also shown that deposition occurs only when particles are 
present in the plasma, and that growth starts from crystallites without any 
amorphous phase.We present here a systematic study of the growth of 

microcrystalline films, together with the composition of nanoparticles 
attracted by thermophoresis to cold traps located both on the walls of the 
plasma chamber and in the fore line as a function of deposition conditions. 
The composition of the deposit on the traps is found to be amorphous at low 
power/ low hydrogen conditions and becomes crystalline when either of 
them increases. This correlates well with an increase in atomic hydrogen 
concentration in the plasma, as estimated by actinometry. The crystalline 
fraction of the deposited film was measured using in-situ ellipsometry and 
was found to correlate with the composition of the deposit on the cold traps. 
Deposition rate is drastically reduced when a water cooled trap is installed 
on the walls of the plasma chamber, and switches off at high H2 flow rates. 
Under these conditions, TEM and AFM images, show that at the initial 
stages of the growth the film is constituted of sparse, hexagonal crystalline 
particles, having sizes on the order of few tens of nanometers. We interpret 
the data above as a result of plasma-generated nanocrystals being a 
significant contribution to the deposited film. This may explain the 
excellent electronic properties of the films, as the particles are formed in the 
bulk of the plasma region, free from energetic ions bombardment. We will 
correlate the structural properties and the film growth mechanisms to the 
properties of solar cells. 

9:20am  EL+TF+AS+EM+SS+PS+EN+NM-MoM4  Multichannel 
Spectroscopic Ellipsometry for CdTe Photovoltaics: from Materials 
and Interfaces to Full-Scale Modules, P. Koirala, J. Chen, X. Tan, N.J. 
Podraza, The University of Toledo, S. Marsillac, Old Dominion University, 
R.W. Collins, The University of Toledo 
Real time spectroscopic ellipsometry (RTSE) has been implemented in 
studies of the evolution of the semiconductor structural and optical 
properties during sputter deposition of thin film polycrystalline CdS/CdTe 
solar cells on transparent conducting oxide (TCO) coated glass substrates. 
Analysis of the real time optical spectra collected during CdS/CdTe 
deposition requires an optical property database as a function of 
measurement temperature for all substrate components. These include not 
only soda lime glass, but also an SiO2 layer and three different SnO2 layers. 
We report optical functions parameterized versus temperature for the glass 
substrate and its overlayers starting from room temperature and ending at 
elevated temperature above which the semiconductor layers are deposited. 
In fact, such a database has additional applications for on-line, through-the-
glass monitoring applications of coated glass at elevated temperature. In the 
RTSE studies, knowledge of the temperature dependent optical functions of 
the substrate components enables an accurate substrate temperature 
determination before the onset of deposition and is critical for accurate 
extraction of the semiconductor layer optical properties. We implement 
RTSE to study the filling process of the surface roughness modulations on 
the top-most SnO2 substrate layer and modification of the optical properties 
of this layer. This modification is further studied post-deposition by infrared 
spectroscopic ellipsometry. In addition to providing information on 
interface formation to the substrate during film growth, RTSE also provides 
information on the bulk layer CdS growth, its surface roughness evolution, 
as well as overlying CdTe interface formation and bulk layer growth. 
Information from RTSE at a single point during solar cell stack deposition 
assists in the development of a model that can be used for mapping the 
completed cell stack properties, which can then be correlated with device 
performance. Independent non-uniformities in the layers over the full area 
of the cell stack enable optimization of cell performance combinatorially.  

9:40am  EL+TF+AS+EM+SS+PS+EN+NM-MoM5  Determination of 
Electronic Band Gaps from Optical Spectra, R.A. Synowicki, J.A. 
Woollam Co., Inc. 
The band gap of a material Eg is defined theoretically as the lowest energy 
for electronic transition from the valence to conduction bands in a solid. For 
an ideal material free of defects this is the photon energy or wavelength 
where the optical properties change from transparent to absorbing. 
However, real materials contain defects which cause absorption to begin 
below the band gap (i.e. the Urbach Tail) making determination of the true 
band gap position difficult. For example, in a solar cell the measured 
absorption edge represents the onset of transitions first due to defects, then 
from band to band. Empirical methods used to determine the band gap in 
real materials with defects include the Tauc plot and the Mott-Davis plot. 
More theoretical mathematical dispersion models such as the Tauc-Lorentz, 
Cody-Lorentz, and Herzinger-Johs models have been developed which 
include an adjustable band gap parameter. The various plots and dispersion 
model methods will be discussed and applied to different materials 
measured optically via spectroscopic ellipsometry, intensity transmission, 
reflection, absorption, or a combination of these methods. 
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10:00am  EL+TF+AS+EM+SS+PS+EN+NM-MoM6  Optical Modeling 
of Plasma-Deposited ZnO: Extended Drude and its Physical 
Interpretation, H.C.M. Knoops, M.V. Ponomarev, J.W. Weber, N. Leick, 
B.W.H. van de Loo, Y.G. Melese, W.M.M. Kessels, M. Creatore, Eindhoven 
University of Technology, the Netherlands 
High-quality transparent conductive oxides such as ZnO are important due 
to their electrical and optical properties. To improve these properties the 
responsible physical processes have to be understood. Traditionally, charge-
carrier-scattering processes are investigated by combining morphology data 
and Hall measurements. This contribution discusses the extensive optical 
modeling of plasma-deposited ZnO and how its interpretation directly 
provides insight into the relevant charge-carrier-scattering processes at 
different length scales. The interpretation is generalized to the concept of 
frequency-dependent resistivity, which is used to explain the applicability 
of different Drude models. 

Thin films (50-1000 nm) of Al-doped and undoped ZnO were deposited 
using an expanding thermal plasma MOCVD process.1 Conditions of high 
pressure and high diethyl zinc flow allowed for dense films with low 
electrical resistivities (e.g., 4×10-4 Ω cm at 300 nm). The films were 
analyzed with variable-angle spectroscopic ellipsometry (SE) (0.75 – 5.0 
eV), FTIR reflection spectroscopy (0.04 – 0.86 eV), Four-point-probe 
(FPP), and Hall measurements. 

The SE and FTIR data were combined and fitted with classical and 
extended Drude2 models. The high intensity of the Drude in the FTIR range 
resulted in a high sensitivity with which the carrier concentration and 
mobility could even be determined for thin (~40 nm) undoped ZnO films. 
An extended Drude model was needed to correctly model the SE energy 
range, which was explained by the dominance of ionized impurity scattering 
and a reduction of this scattering for higher photon energies. The grain-
boundary-scattering mobility could be determined by the difference 
between optical and Hall mobilities.3 When combined with FPP results, the 
effective mobility can be determined from these optical techniques without 
the use of Hall measurements. The optical response above the band gap was 
modeled by a PSEMI or Tauc-Lorentz oscillator model, where a broadening 
and shift of the transition was seen for increasing carrier concentration.4 

These insights and a generalized view of electron scattering in ZnO at 
different length scales will be presented. 

1. Ponomarev et al., J. Appl. Phys. Submitted (2012) 

2. Ehrmann and Reineke-Koch, Thin Solid Films 519, 1475 (2010) 

3. Steinhauser et al., Appl. Phys. Lett. 90, 142107 (2007) 

4. Fujiwara and Kondo, Phys. Rev. B 71, 075109 (2005) 

10:40am  EL+TF+AS+EM+SS+PS+EN+NM-MoM8  The Ellipsometric 
Response of Single-Crystal Silicon to Doping, H.G. Tompkins, 
Consultant 
The current wisdom is that for ellipsometry in the UV-vis-NIR spectral 
range, doping of single-crystal silicon can be ignored. We study the 
ellipsometric response of silicon doped with arsenic at various levels. We 
also studied the response after implant (before activation) and after the 
activation (anneal). We find that for samples implanted with 1E18 
atoms/cm3, the single-crystal silicon was not amorphized. Implants of 2E19 
atoms/cm3 and higher left an amorphous layer on the surface of the wafer 
the thickness of which was about the depth of the implant. Activation of the 
sample implanted with 2E19 atoms/cm3 returned the sample to single-
crystal silicon and the ellipsometric response in the UV-vis-near_IR is 
essentially that of undoped silicon. However, the response in the mid-IR is 
that the extinction coefficient is no longer zero. For samples implanted with 
2.5E20 atoms/cm3 and greater, annealing did not return the UV-vis-near_IR 
ellipsometric response to that of single-crystal silicon. Although this 
amount of other material (arsenic) is still less that about one tenth of one 
percent, our conjecture is that the microstructure simply could not be 
returned to that of a single crystal. As with the lower doped sample, the 
mid-IR spectral region showed significant increase in the extinction 
coefficient. 

11:00am  EL+TF+AS+EM+SS+PS+EN+NM-MoM9  The Effect of 
Stress on the Optical Properties Semiconductor Films, A.C. Diebold, 
G.R. Muthinti, M. Medikonda, T.N. Adam, College of Nanoscale Science 
and Engineering, University at Albany, A. Reznicek, B. Doris, IBM 
Research at Albany Nanotech 
Here we review the impact of stress on the complex dielectric function of 
semiconductor films measured using spectroscopic ellipsometry. Two 
relevant examples of stressed semiconductor layers are pseudomorphic 
epitaxial layers fabricated during semiconductor manufacturing and strained 
silicon on insulator (sSOI) wafers. Stress is known to shift the energies of 
direct gap critical point transitions in semiconductors. The biaxial stress in 
pseudomorphic films grown on silicon wafers can be as high as that used 
during opto-elastic studies of bulk semiconductors. The amount of stress in 

un-relaxed, pseudomorphic films of Si1-xGex on Si (100) reaches 1 GPa for 
alloys with 20% Ge and is more than 3 GPa for films with > 50% Ge. The 
bi-axial stress in sSOI is typically ~1 GPa. An elastic theory approach for 
the effect of strain on the k*p determined band structure and optical 
transition energy is well known. Both low shear stress and high shear stress 
approximations can apply to the shift in transition energy depending on the 
magnitude of the spin orbit splitting energy vs the magnitude of the shear 
stress. Until recently it was difficult to obtain sets of samples that test both 
approximations. Here we discuss results from our recent study of 
pseudomorphic films of Si1-xGex on Si (100) from x= 0.05 to 0.75 which 
covers both low and high shear regimes. We also present our recent study of 
the dielectric function of thinned sSOI which illustrates the impact of stress 
on the optical transitions for the Si layer on sSOI. All of these samples are 
examples of new materials being used in semiconductor research. The 
results of this study are directly transferred into cleanroom spectroscopic 
ellipsometry systems used for process control during manufacturing. 

11:20am  EL+TF+AS+EM+SS+PS+EN+NM-MoM10  Numerical 
Ellipsometry: Spectroscopic n-k Plane Analysis of Thin Films Growing 
on Unknown Layered Substrates, F.K. Urban, D. Barton, Florida 
International University 
Spectroscopic ellipsometry measurements on thin films commonly make 
use of prior knowledge of the structure and optical properties of the 
underlying substrate. However, imprecision in substrate statistics 
propagates into the solution for the film of interest. Thus it is more accurate 
to have a method for solving for film properties which simultaneously 
obtains whatever is needed about the substrate. And it makes solutions 
possible whether or not book data or previous substrate solutions are 
available. In this work we apply Complex Analysis in the n-k plane to 
achieve solutions employing the well-know reflection equations. The 
method is carried out at each measured wavelength and does not necessitate 
an a-priori assumption of optical property dependencies on wavelength. 
The mean square error has been improved by many orders of magnitude, a 
selected limit of 10-14 as opposed to 1 to 30 or so for least squares. Thus the 
full accuracy of the ellipsometer is now available for more accurate 
measurements of film thickness and optical properties. The method requires 
six measurements during growth. The first is used to determine the 
relationship between Rp and Rs at the film-substrate interface. The 
following four are used to uniquely determine the values of Rp, Rs, and film 
n, k, and d. The final measurement confirms the unique solution. Suitability 
of the model is tested by comparing measurements at two of more 
wavelengths for self consistency. Results for n and k of the growing film 
are examined across the measurement spectrum in comparison with 
parameterizations in common use. 
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