AVS 59th Annual International Symposium and Exhibition
    Tribology Focus Topic Wednesday Sessions
       Session TR+SE-WeM

Paper TR+SE-WeM5
Tribological and Compositional Properties of Electroless Nickel-Boron Coatings Annealed at Various Temperatures

Wednesday, October 31, 2012, 9:20 am, Room 19

Session: Tribology and Wear of Low-Friction Coatings and Materials
Presenter: K. Gilley, University of Florida
Authors: K. Gilley, University of Florida
Y. Riddle, UCT Coatings Inc.
S.S. Perry, University of Florida
Correspondent: Click to Email

In this study, the tribological and compositional properties of annealing temperatures on electrolessly deposited nickel boride coatings were investigated. All samples were coated in the same bath and had approximately the same starting composition: 31 atomic % Ni, 19 atomic % B, 42 atomic % O, and 8 atomic % C . Samples were annealed at temperatures of 250°C, 400°C, 550°C, and 700°C under a constant flow of oxygen. The tribological properties of the samples were tested using a novel pin-on-disc tribometer. The pin-on-disc tribometry was performed in air under ambient RH conditions, keeping conditions the same throughout all tests that were performed. The influence of the annealing temperature on surface composition was studied by X-ray photoelectron spectroscopy (XPS), used to identify and relatively quantify the elements present. Raman spectroscopy was used to differentiate between chemical species that were indistinguishable in XPS. Increasing annealing temperatures were seen to influence the tribological properties of the coatings to a large degree; with the samples with higher annealing temperatures having a significantly lower coefficient of friction, μ≈0.16 for the sample annealed at 550°C and μ≈0.06 for the sample annealed at 700°C, than the lower temperature annealed samples, μ≈0.5 for samples annealed at 250°C and 400°C. Similarly, the chemical nature of the coatings were strongly affected by the differing annealing temperatures; with the higher annealing temperature samples showing heavy oxidation and migration of boron to the surface, while the lower annealed samples remained largely unchanged. The lowering of the friction coefficient in the samples annealed at 550°C and 700°C was attributed to the migration and subsequent oxidation of boron forming low friction B2O3 at the surface.