AVS 59th Annual International Symposium and Exhibition
    Tribology Focus Topic Wednesday Sessions
       Session TR+SE-WeM

Paper TR+SE-WeM12
Synthesis and Tribology of MoS3 Nanoparticles

Wednesday, October 31, 2012, 11:40 am, Room 19

Session: Tribology and Wear of Low-Friction Coatings and Materials
Presenter: J.R. Lince, The Aerospace Corporation
Authors: J.R. Lince, The Aerospace Corporation
A.M. Pluntze, Colorado State University
S.A. Jackson, The Aerospace Corporation
Correspondent: Click to Email

There has been recent interest in the use of solid lubricant nanoparticles in coatings and as boundary additives in liquid lubricants. Examples include nanoparticles of MoS2 and WS2. The formation of these nanoparticles is nontrivial, requiring techniques such as gas phase syntheses and electric discharges. We are exploring simpler syntheses using wet chemical techniques. In particular, the synthesis of MoS3 nanoparticles involves hydrothermal reaction between molybdate salts and sodium sulfide under controlled pH conditions.1

The use of MoS3 as a tribological material has not been explored beyond its use as an oil additive.2 We are investigating its potential for use in solid lubricant coatings. Bonded MoS2 coatings experience widespread usage for lubricating mechanisms on virtually every spacecraft (i.e., using micron-sized MoS2 particles). We formulated resin-bonded coatings using MoS3 nanoparticles as the lubricating pigment, and compared their tribological performance to commercial bonded MoS2 coatings. Surprisingly, the MoS3-formulated coatings performed similarly to the MoS2-based coatings. Specifically, they showed similar coefficients of friction (i.e., 0.04 to 0.06) and endurances in dry nitrogen (<0.1% RH). We will present results of surface analyses on worn coatings to reveal changes in composition and chemical state of the MoS3 that might explain the measured low friction. In addition, results of tribological performance in humid air atmospheres will be presented.

We have also explored syntheses of MoS2 nanoparticles using nanosize MoS3 as a starting material. A recent study purported to create MoS2 nanoparticles with the addition of an aqueous reducing agent during hydrothermal synthesis of MoS3.3 However, X-ray fluorescence analysis of the product of our synthesis showed that the S:Mo remained at 3.0 after using the reducing agent. Other conversion methods including vacuum reduction of the MoS3 nanoparticles will be discussed.

References:

1. P. Afanasiev, “Synthetic approaches to the molybdenum sulfide materials,” Comptes Rendus Chimie, 11(1–2) (2008) 159–182.

2. O.P. Parenago, V.N. Bakunin, G.N. Kuz’mina, A.Yu. Suslov, and L.M. Vedeneeva, “Molybdenum Sulfide Nanoparticles as New-Type Additives to Hydrocarbon Lubricants,” Doklady Chemistry, 383(1-3) (2002) 86-88.

3. Y. Tian, X. Zhao, L. Shen, F. Meng, L. Tang, Y. Deng, Synthesis of amorphous MoS2 nanospheres by hydrothermal reaction,” Materials Letters 60 (2006) 527–529.

This work was funded in part by The Aerospace Corporation's Sustained Experimentation and Research for Program Applications program.

© The Aerospace Corporation 2012