AVS 57th International Symposium & Exhibition
    Frontiers in Inkjet Technology Topical Conference Monday Sessions
       Session IJ+BI+MN-MoM

Paper IJ+BI+MN-MoM8
Fabrication of Miniature Drug Screening Platform Utilizing Low Cost Bioprinting Technology

Monday, October 18, 2010, 10:40 am, Room Tesuque

Session: Frontiers in Inkjet Technology
Presenter: J. Rodriguez, University of Texas at el Paso
Authors: J. Rodriguez, University of Texas at el Paso
T. Xu, University of Texas at el Paso
Correspondent: Click to Email

In the pharmaceutical industry, new chemicals and substances are being tested to find appropriate compounds for treating a specific disease. The demand for screening large compound collections against and increasing number of therapeutic targets has stimulated technology development in the areas of assay automation and miniaturization. Current methods for evaluating the reactions of cells use a relatively large volume in the range from microliters to milliliters; since reliability has to be met, it exists the need to have several assays to confirm the biochemical reactions, which ultimately cause the usage of large amounts of volume for each substance. Unfortunately, some of these new compounds are rather hard to obtain, which causes an expensive researched and limited material availability; therefore, increasing the time development for future cures. We have developed a new and low-cost deposition method to fabricate miniature drug screening platform that can realistically and inexpensively evaluate biochemical reactions up to 4 substances per trial in a picoliter-scale volume.
 
This study focues on the development of the controls for a deposition method (inkjet printing technology) which will simultaneously place therapeutic drugs and cells onto target sites to fabricate cell/drug chips for drug screening application. Using a modified HP 5360 CD printer, droplets of GFP expressing Escherichia coli have been deposited in an agar coated coverslip chip as small reliable volume of 180 picoliters per each colony dot, along with this bacteria it has been patterned different antibiotics in such a way that we evaluated the growth of the bacteria under antibiotics presence. The viability and function of the printed cells were evaluated by the live/dead and plasmid gene transfection experiments resulting in 98% viability and maintaining DNA function. Moreover, it has been recorded as high throughput process printing 250,000 droplets/second. Due to the reduction of volume, this method will increase the effectiveness of the resources utilized for emerging drug screening processes. The results show promising usage of resources for future drug screening through new biochemicals.