AVS 57th International Symposium & Exhibition
    Actinides and Rare Earths Topical Conference Tuesday Sessions
       Session AC+MI-TuM

Paper AC+MI-TuM12
Study of f Electron Correlations in Uranium- and Cerium-Oxides by BIS and XES

Tuesday, October 19, 2010, 11:40 am, Room Isleta

Session: Actinide and Rare Earth Magnetic Interfaces & Nanostructures
Presenter: S.W. Yu, Lawrence Livermore National Lab
Authors: S.W. Yu, Lawrence Livermore National Lab
B.W. Chung, Lawrence Livermore National Lab
D.G. Waddill, Missouri University of Science and Technology
J.G. Tobin, Lawrence Livermore National Lab
Correspondent: Click to Email

When a high energy electron beam impinges on a material, some electrons of the incident electron beam are decelerated into the unoccupied states of the material with a spontaneous emission of electromagnetic radiation (bremsstrahlung). This bremsstrahlung process can be considered as the inverse of the photoemission process if the initial and final states are exchanged and the occupied state is replaced by the unoccupied one. BIS (Bremsstrahlung Isochromat Spectroscopy) is a very powerful tool to study the bulk unoccupied electronic structures of materials, minimizing the impact of surface effects.

Recently, we have developed a BIS capability, using an XES-350 system from VG SCIENTA, at the Lawrence Livermore National Laboratory, to investigate the electronic structure of actinides, in which 5f electrons play important roles to determine their physical and chemical properties. Similar to the resonant photoemission, the measured BIS signal can be resonantly enhanced when the electron energy reaches the threshold of the binding energy of a core electron, as a result of the interference between the BIS signal and the x-ray emission signal emitted by a radiative decay of the core hole. In case of cerium-oxide, the BIS signal is enhanced significantly at the 3d→ 4f resonance. However, in the case of uranium-oxide, the BIS signal is enhanced only slightly at the 4d → 5f resonance.

The x-ray emission can be described as a spontaneous emission of photons in a transition that are allowed by the dipole selection rules between two electronic states. The implication of the dipole selection rules is that, for example, in the case of K-emission, where 1s holes are created, only states with p-character are allowed to decay and the partial p-type density of state is measured in a x-ray emission spectrum. Therefore, the x-ray emission spectra from a variety of core levels allow us to study the symmetries of the occupied electronic states.

We will present the resonant BIS spectra and x-ray emission spectra (U 4f, 4d, O1s, Ce 3d) of the uranium- and cerium-oxides. Based on these data, we will discuss the detailed electronic structures of f electrons in uranium- and cerium-oxides.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under contract DE-AC52-07NA27344. This work was supported by the DOE Office of Science, Office of Basic Energy Science, Division of Materials Science and Engineering.