AVS 56th International Symposium & Exhibition | |
Magnetic Interfaces and Nanostructures | Friday Sessions |
Session MI-FrM |
Session: | Molecular/Organic Based Magnetism |
Presenter: | M. Yamashita, Tohoku University, Japan |
Correspondent: | Click to Email |
As for (1), since the potential barrier of the double wells is defined as DS2 and (8J+D)S2 for the single-molecule magnets and single-chain magnets, respectively, we must increase the D, S, and J parameters to raise the blocking temperatures of these compounds. However, the control of the parameter D is very difficult. Then, we propose the conducting quantum molecular magnets. By the interaction between conducting electrons and localized quantum molecule magnets, the coherence among the quantum molecule magnets is strengthened and then the spin flips are made difficult, resulting in raising the blocking temperature. According to such a strategy, we have synthesized three types of conducting single-molecule magnets such as [Mn4(hmp)6(MeCN)2][Pt(mnt)2]6, [Mn2(5-MeOsaltmen)2(MeCN)2][Ni(dmit)]7(MeCN), and [Mn2(5-Rsaltmen)2][Ni(dmit)2]2. As for (2), since in the quantum molecular magnets, we can create artificially the large spin numbers such as S =10, 20, 30, etc, we can anticipate new quantum GMR phenomena by interacting between large S and conducting electrons. According to such a strategy, we try to synthesize a metallic single-molecule magnet. Otherwise, we have a plan to occur a photo-induced phase transition from semiconductor to metallic state in conducting single-molecule magnet. As for (3), we have accessed to one single-molecule magnet of Pc2Tb by STM. We have a plane to input one memory into one single-molecule magnet and output it from one single-molecule magnet by using spin-polarized STM. We have observed Kondo Effect at 4.8 K in this compound by STS for the first time. As for (7), we have synthesized the single-molecule magnet with photo-induced switching and the single-chain magnet with absorption and desorption of crystal solvents reversibly like a spo