Invited Paper BM+MN+MS+TF+BI-ThA1
Advances towards Programmable Matter
Thursday, November 12, 2009, 2:00 pm, Room A8
A dichotomy exists between the bottom-up self-assembly paradigm used to create regular structures at the nanoscale, and top-down approaches used to fabricate arbitrary structures serially at larger scales. The former of these enables rapid, highly parallel assembly but lacks critically important features of the latter such as the ability to arbitrarily direct the assembly location and perform error correction. We and our collaborators have recently proposed an alternative approach which combines these two based on dynamically programmable self-assembling materials, or programmable matter. The uniqueness of our approach is that it uses dynamically-switchable affinities between assembling components facilitating the assembly of irregular structures. In this talk I present an overview of our approach and detail some of the analytical and experimental advances towards a programmable matter system we have recently made. These include: the development of a multi-chamber microfluidic chip for improved far-field assembly, the demonstration of near-field inter-tile affinity switching using a thermorheological assembly fluid and the ability to enhance assembly in three dimensions using unique fluid-structure interactions.