AVS 53rd International Symposium
    Surface Science Tuesday Sessions
       Session SS-TuP

Paper SS-TuP10
Running Current through a Single Non Resonant Quantum State in Silicon

Tuesday, November 14, 2006, 6:00 pm, Room 3rd Floor Lobby

Session: Surface Science Poster Session
Presenter: R. Stiufiuc, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
Authors: M. Berthe, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
A. Urbieta, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
R. Stiufiuc, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
B. Grandidier, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
D. Deresmes, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
C. Delerue, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
D. Stievenard, Institut d'Electronique, de Microelectronique et de Nanotechnologie, France
R. Rurali, LCAR (UMR 5589), France
N. Lorente, LCAR (UMR 5589), France
L. Magaud, Laboratoire d'Etude des Proprietes Electronique des Solides (LEPES-CNRS), France
P. Ordejon, Institut de Ciencia de Materials de Barcelona, Spain
Correspondent: Click to Email

Due to its ability to resolve geometric structures on the atomic scale, scanning tunnelling microscopy (STM) is a technique well suited to identify individual point defects on a surface. In principle, its versatility should allow to spectroscopically characterize the coupling of tunnelling electrons to the electronic states and the nuclear motions of a defect. Such a measurement, which has recently been achieved on isolated molecules adsorbed on a thin insulating layer still needs to be demonstrated for other systems, particularly semiconductor systems. We have studied the transfer of electrons through the localized dangling bond state of an isolated Si adatom lying in a passivated silicon surface at 5 Kelvin. While the state is electronically decoupled from the silicon bulk states, a strong electron-vibration coupling is evidenced by measurement of the inelastic current and supported by density functional calculations.