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2:00pm BI+AS+MM+NS+SS-TuA1 Self-Assembly of a Multidomain Protein: 
Fibronectin at Lipid Model Interfaces, V. Vogel, G. Baneyx, University of 
Washington INVITED 

Fibronectin, an adhesion protein with multiple recognition sites, mediates 
cell attachment to synthetic and biological surfaces. In solution, fibronectin 
exists in a globular state where most of its recognition sites are buried in 
the protein core. Surface adsorption induces conformational changes in the 
protein that expose many of these sites. Furthermore, it is known that on 
the surface of cells fibronectin assembles into detergent insoluble fibers, 
which are considered to be the main functional form of the protein. 
Fibronectin is hence a prime example of a protein with multiple recognition 
sites that can be regulated through environmental control. Unfortunately, 
the molecular pathways of activation and self-assembly are still poorly 
understood. We have recently found that fibronectin can self-assemble 
into fibrillar networks at receptor-free phospholipid monolayer interfaces 
under physiological conditions. This is a crucial observation since the 
paradigm in biology is that fibril assembly of fibronectin is mediated by 
membrane-bound receptor molecules. Availability of a simplified model 
system allows investigation of the molecular pathways by which 
appropriate surfaces can activate fibronectin and facilitate self-assembly. 

2:40pm BI+AS+MM+NS+SS-TuA3 Nanofabricated Substrates for Probing 
Single Biomolecules by Surface Enhanced Raman Scattering, S. Petronis, 
L.K. Hedberg, H. Xu, M. Käll, B. Kasemo, Chalmers Univ. of Technology and 
Univ. of Gothenborg, Sweden 

The effect of Raman scattering enhancement when coherent laser light 
interacts with molecules attached to rough surfaces and microscopic metal 
domains has been known for more than two decades and is called Surface 
Enhanced Raman Scattering (SERS). The intensity of the Raman signals for 
such molecules is frequently enhanced by a factor 10@super 5@-
10@super 6@ at best.@footnote 1,2@ However recently much larger 
enhancement factors, in the range 10@super 14@-10@super 15@, have 
been observed for molecules adsorbed on colloidal silver particles of 
specific dimensions.@footnote 3,4@ This giant enhancement allows the 
recording of vibrational spectra from a single molecule for the first time, 
instead of the ensemble averaged spectra from many molecules, which are 
normally obtained in optical spectroscopies. Here we report on an attempt 
to use nanolithography to fabricate structures of silver in the size range 100 
- 200 nm and having different shapes in order to explore the size and 
geometry dependence of the SERS effect. Microfabricated structures which 
give the highest enhancement could be used for probing different 
biomolecules and perhaps designing a biosensor. SERS active substrates 
were prepared as arrays of silver particles on a Si wafer. Within each array 
the silver particles had a constant shape, size and separation. Three particle 
shapes (circular, triangular and square), two particle sizes (100 nm and 200 
nm), and five different particle separations (10, 50, 100, 150 and 200 nm) 
were produced by electron beam lithography with a double-layer resist 
system and "lift-off" procedure. A reference area of uniformly deposited Ag 
film mimicked an infinite silver surface. The final structures and the 
chemical composition of the silver particles were characterized by Scanning 
Electron Microscopy (SEM) and Auger electron spectroscopy (AES), 
respectively. Preliminary Raman scattering experiments have been 
performed on the dye-molecule Rhodamin 6G adsorbed on the 
nanofabricated substrates. A giant enhancement of the Raman signal was 
observed on all patterns, but not on the Ag film or the Si surface. 
@FootnoteText@ @footnote 1@M.Moskovits, Rev. of Mod. Phys., vol. 57, 
No 3, 1985, pp 783-826 @footnote 2@A.G.Mal'shukov, Phys. Rep., vol 194, 
Nos 5&6, 1990, pp 343-349 @footnote 3@K.Kneip et al., Phys. Rev. Lett., 
vol. 78, No 9, 1997, pp1667-1670 @footnote 4@S.Nie, S.R. Emory, Science, 
vol. 275, No 21, 1997, pp 1102-1106 

3:00pm BI+AS+MM+NS+SS-TuA4 Nanostructured Surfaces for 
Biorecognition - A Novel Templating Approach, H. Shi, B.D. Ratner, 
University of Washington 

Materials that specifically recognize proteins may find a variety of 
applications in separations, sensors and medical materials. Molecular 
imprinting provides an intriguing approach to plastic antibodies against 
small molecules, but the use of proteins as templates has been less 
successful in making protein recognition materials. In this study, 
nanostructured surfaces with tailored protein-binding cavities are prepared 

by an imprinting technique based on RF-plasma deposition of organic thin 
films. A polysaccharide-like surface with protein-imprinted nanopits allows 
only the template protein to fill the pits, and to bind strongly, because the 
nanopits are complementary to the template protein in shape and in the 
distribution of functional groups. The bound protein in its pit is prevented 
from exchange with protein in the solution due to a strong binding and 
steric hindrance, while the non-template protein that is weakly adsorbed 
on the surface is displaceable. Atomic force microscopy (AFM) and 
transmission electron microscopy (TEM) showed that nanometer-sized pits, 
in the shape of imprinted proteins, were created on the surfaces of our 
protein-imprinted polymer films. Imprinting fidelity was confirmed by AFM 
analysis of imprints of monodisperse colloidal gold nanoparticles. Electron 
spectroscopy for chemical analysis (ESCA) and time-of-flight secondary ion 
mass spectrometry (TOF-SIMS) indicated that template proteins were 
washed off the surfaces of protein imprints while sugar molecules were 
covalently incorporated. Radiolabeled -protein adsorption showed that a 
protein imprint recognized its template protein from a binary mixture with 
a high specificity. This study illustrates a novel templating strategy for 
biological molecules that can be exploited for fabrication of biorecognition 
materials. 

3:20pm BI+AS+MM+NS+SS-TuA5 Sensing and Analyzing Single Molecular 
Interactions with Microfabricated Devices@footnote 1@, J.-B.D. Green, 
G.U. Lee, Naval Research Laboratory INVITED 

There is an intense effort to create new tools for manipulating and 
characterizing single macromolecules because of the power that these 
techniques can bring to the analysis of biological macromolecules. Due to 
the high force and displacement sensitivity of the atomic force microscope 
(AFM) it has been used to measure inter- and intramolecular forces 
between model ligand-receptors, i.e., streptavidin-biotin, complimentary 
strands of DNA, and biologically relevant supra-molecular structures, i.e. 
titin. With the success of these measurements, there are efforts to obtain 
even more detailed force measurements and to establish these techniques 
in the biotechnology laboratory. Our efforts focus on: 1. Designing force 
transducers with force (10@super -12@N), time (10@super -5@s) and 
spatial (10@super -9@m) resolutions that push the thermal noise 
envelope. 2. Developing immobilization strategies that produce more 
reliable force measurements. We will discuss two new microfabricated 
devices under development in our laboratory. The first microfabricated 
apparatus offers an excellent platform for detailed measurements of 
intermolecular interactions and possibly even analysis of combinatorial 
arrays. The second is an ultra-sensitive detector based on piezoresistive 
force transduction and magnetic microparticles. The future of these and 
similar devices will be considered. @FootnoteText@ @footnote 1@This 
work has been conducted in collaboration with Alexey Novoradovsky, 
Jonah Harley, Mohan Natesan, Steven Metzger, David Baselt, and Richard 
Colton. 

4:00pm BI+AS+MM+NS+SS-TuA7 Nanomechanical Properties of Cellular 
Components Determined by Interfacial Force Microscopy, P.R. Norton, K 
de Jong, J.F. Graham, N.O. Petersen, University of Western Ontario, Canada 

The cell membrane is the contact surface between the cell's internal 
environment and the outside world. Increasingly it is recognized the there 
is strong active coupling between mechanical properties and cellular 
functions in properties such as locomotion and adhesion and in 
cytoskeletal diseases such as muscular dystrophy.@footnote1@ There is 
therefore an urgent need to understand the mechanical properties of cells 
and cellular subcomponents at length scales << 1µm. We will describe our 
initial experiments to achieve this goal. We have used three different 
imaging techniques in our investigation of the nanomechanical properties 
of larynx cells. First, immunofluorescent labelling was used to permit 
visualization of specific cell components in the confocal microscope, for 
example to determine whether the cell nucleus was removed in a shearing 
process. The same cell was then imaged in the atomic force microscope 
(AFM), permitting identification of components involved in motion such as 
microspikes. The nanomechanical properties of cells were then studied by 
nanoindentation using the interfacial force microscope 
(IFM).@footnote2@ While we have not yet succeeded in imaging and 
measuring the same cell used in the confocal and atomic force 
microscopies, we have demonstrated the feasibility of our approach and 
have obtained quantitative force-distance curves on different regions of a 
single cell fixed in paraformaldehyde, sodium periodate and lysine, which 
cross-links the proteins. From these data we can derive the elastic 
modulus, hardness etc of the specific region of the cell. The modulus of 
such a cell was ~ 3GPa, comparable to a soft polymer. Similar 
measurements are planned on unfixed cells. @FootnoteText@ 
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@footnote1@Chen, C.S., et al. Science 276, 1425 (1997) 
@footnote2@Warren, O.L., et al. Physics in Canada 54, 122 (1998) 

4:20pm BI+AS+MM+NS+SS-TuA8 Unbinding Force of NTA-M@super 2+@-
-Histidine Complexes. The His-Tag Immobilization Force, J.G. Forbes, P. 
Yim, University of Maryland, College Park 

A sequence of six or more histidines will bind tightly to a Cu, Ni, or Co 
complex. The compound typically used to immobilized the metal is N-(5-
amino-1-carboxypentyl)iminodiacetic acid (NTA). Most proteins will not 
bind to the complex unless there is a sequence of histidines, which is 
readily added using recombinant DNA techniques. The histidine tag may be 
removed from the metal complex with a high concentration of imidazole or 
by protonating the histidines at a pH below 6. We have studied the the 
unbinding strength of this interaction with the atomic force microscope 
(AFM). To perform this measurement, we have functionalized silicon nitride 
AFM tips with NTA-M@super 2+@. A glass slide was coated with 
recombinant DNAse I with a his-tag on the C-terminus. Unbinding force 
measurements were made in phosphate buffered saline (PBS) to reduce 
electrostatic interactions. We find that the unbinding force for the NTA-
M@super 2+@/His-tag interaction to be ca. 85~pN for each of the metal 
complexes. Interestingly, 0.5~M imidazole does not remove the 
interaction, but only changes the distribution of the measured forces. This 
is a result of the non-equilibrium condition of the tip being forced into the 
protein coated surface. The interaction is almost completely removed by 
lowering the pH to 5.0 where the histidines are protonated and can no 
longer coordinate with the nickel. The remaining interaction forces are due 
to the histidines which are exposed when the tip presses into the surface. 
These results provide a quantitative measurement of mechanical strength 
of binding of proteins to surfaces functionalized with NTA-M@super 2+@. 

4:40pm BI+AS+MM+NS+SS-TuA9 Sieving of DNA Molecules in Nanofluidic 
Channel, J. Han, H.G. Craighead, Cornell University 

Entropic trapping and sieving effect of long DNA molecules was studied in 
variable thickness nanofluidic channels. We used photolithography and 
etching techniques to define fluid channels on Si wafers, and anodic 
bonding method to seal the channel with a thin pyrex glass coverslip. The 
channel consists of alternating regions with two different channel 
thicknesses(~100nm and 1.6µm). We studied electrophoretic motion of 
lambda phage DNA in this channel by epi-fluorescence microscopy. Since 
the radius of gyration of a typical long DNA molecule is larger than the 
smaller gap of the channel, the shallow part of the channel can be an 
entropic barrier for DNA motion.Therefore, DNA molecules were retarded 
when they entered into the thin region from the thick region. We 
measured the mobility of DNA molecules in these channels and observed 
that below a certain electric field, mobility of DNA molecule decreased to 
near zero drastically, showing that DNA molecules be entropically trapped 
and sieved. The threshold electric field was mainly dependent on the 
geometry of channel(e.g. gap size) and the length of DNA driven. This 
suggests a new type of separation device for DNA and other polymers. 

5:00pm BI+AS+MM+NS+SS-TuA10 Detection of Molecular Ion and 
Quantification of Pentapeptide on Plasma Hydroxylated Fluoropolymer 
by Time of Flight Secondary Ion Mass Spectrometry, J.A. Gardella, L.M. 
Sun, State University of New York, Buffalo 

Abstract: Poly(hexafluoropropylene-co-tetrafluoroethylene) (FEP) was 
modified by a hydrogen/methanol radio frequency glow discharge plasma. 
Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) was employed 
to characterize the modified FEP surface and three pentapetides (YGGFM, 
YGGFL, YIGSR) which were microsyringe deposited on the modified FEP 
film. New fragments of OH (CF@sub 2@)n in negative ion SIMS of the 
modified FEP film indicated that -OH functional group had been 
incorporated on the FEP surface after plasma treatment. In the positive ion 
SIMS of three pentapeptides on the hydroxylated FEP film, protonated 
molecular ions were dominant signals from the peptides whereas not many 
fragments were observed either from the peptides or the impurity. Sodium 
and potassium adduct molecular ions were detected as well as oxidized 
protonated molecular ion of YGGFM in the positive ion SIMS spectrum. 
Negative ion SIMS of YGGFL yielded a deprotonated molecular ion. The 
mixture of these three pentapetides was also studied by TOF-SIMS. The 
relative intensity of protonated molecular ions of YGGFL, YGGFM and YIGSR 
showed the possibility of quantification on the hydroxylated fluoropolymer 
by TOF-SIMS. As a study of substrate effects, TOF-SIMS spectra of these 
peptides on oxidized Ag substrate were recorded. Comparing SIMS results 
of pentapetides on Ag and on modified FEP film, fewer fragments occurred 
from the FEP film than that from the Ag substrate. A substrate like the FEP 

fluoropolymer might be beneficial for the quantification of peptides 
because of the intensity of parentlike species in SIMS measurement. 
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