Pacific Rim Symposium on Surfaces, Coatings and Interfaces (PacSurf 2018)
    Energy Harvesting & Storage Wednesday Sessions
       Session EH-WeM

Paper EH-WeM2
Novel Semi-Transparent Inorganic Sb2S3 Thin Film Solar Cells

Wednesday, December 5, 2018, 8:20 am, Room Naupaka Salon 5

Session: Efficient Power Conversion/Cells
Presenter: Shi-Joon Sung, DGIST, Republic of Korea
Authors: S.-J. Sung, DGIST, Republic of Korea
S.-J. Lee, DGIST, Republic of Korea
K.-J. Yang, DGIST, Republic of Korea
J.-K. Kang, DGIST, Republic of Korea
D.-H. Kim, DGIST, Republic of Korea
Correspondent: Click to Email

In recent years, researches on transparent photovoltaics has been attracting immerse interests as a key component of multifunctional window applications. Until now, there were enormous researches on transparent photovoltaics were based on organic materials, such as dye sensitized solar cell (DSSC) or organic solar cell (OSC), because of wide bandgap of the organic materials. However, these organic-based transparent solar cells are still suffering from the stability problem, which is one of critical obstacles for the commercialization of organic-based solar cells. In order to overcome this problem, some researchers are nowadays interested in the inorganic-based transparent solar cell technologies, such as ultra-thin film solar cells, patterned aperture solar cells, and so on. However, in these cases, device fabrication process is complicated and the device performance is limited because of restricted physical dimensions.

Because inorganic Sb2S3 has wide bandgap (1.6 ~ 1.8 eV) and higher absorption coefficient (105 cm) compared with other inorganic materials, Sb2S3 might be a good candidate for inorganic semi-transparent absorber materials. In our work, we adopted ultra-thin and high quality Sb2S3 thin films as a semi-transparent absorber layer. The high quality Sb2S3 thin films with different thickness were deposited using atomic layer deposition (ALD) technique, which showed bandgap of 1.78 eV, absorption coefficient of 1×105 cm, and light transmittance up to 30 %. In order to fabricate semi-transparent solar cell devices, ALD Sb2S3 thin film with 80 nm thick were firstly deposited on transparent TiO/ITO substrates. Transparent P3HT and ultra-thin transparent Au electrode were also deposited onto the ALD Sb2S3 thin film. This semi-transparent Sb2S3 solar cell device showed power conversion efficiency of 3.44% and average light transmittance (from 400 to 800 nm) of 13%. The semi-transparent Sb2S3 solar cell device also showed excellent device stability over 180 days, which might be attributed to the inorganic Sb2S3 absorber material. Semi-transparent inorganic thin film solar cells based on Sb2S3 has a great potential to be a novel robust and stable transparent solar cell technology.