Pacific Rim Symposium on Surfaces, Coatings and Interfaces (PacSurf 2016) | |
Thin Films | Tuesday Sessions |
Session TF-TuP |
Session: | Thin Films Poster Session |
Presenter: | Ho-Ik Du, Chonbuk National University, Republic of Korea |
Authors: | H.-I. Du, Chonbuk National University, Republic of Korea S.C. Yang, Chonbuk National University, Republic of Korea H.G. Jeong, Chonbuk National University, Republic of Korea |
Correspondent: | Click to Email |
To protect REBCO layers that are weak against thermal impact after quenching, REBCO thin-film superconducting wires are manufactured with a complex structure of a substrate layer (metal), a superconducting layer (ceramic), and a stabilizing layer (metal). The stabilizing layer is positioned at the outermost layer of the REBCO thin-film superconducting wire to cover the REBCO superconducting layer, and is made mainly of Ag. The stabilizing layer normally protects the REBCO superconducting layer from thermal stress.
Therefore, in this paper, a REBCO thin film superconducting wire was fabricated by depositing materials with different specific resistance values (Ag) on REBCO thin-film superconducting wire, using the “RF Sputtering Deposition Method” with micro-range thicknesses to form a outer layer. Then the fabricated REBCO thin film superconducting wire were subjected to basic characteristics tests (measurement of their temperature distribution according to their changing resistance) and over-current transport- current tests to investigate their phase transition. Finally, the results of the basic characteristics tests and the over-current transport-current tests were analyzed to present the applications of superconducting power application devices of the REBCO thin film superconducting wire according to the thickness and properties of the wire’s stabilization layer