Pacific Rim Symposium on Surfaces, Coatings and Interfaces (PacSurf 2016)
    Biomaterial Surfaces & Interfaces Tuesday Sessions
       Session BI-TuP

Paper BI-TuP13
Collagen Fibrils Imaging in Air and in Liquid Using Atomic Force Microscope-Based Fast Nanomechanical Mode

Tuesday, December 13, 2016, 4:00 pm, Room Mauka

Session: Biomaterial Surfaces & Interfaces Poster Session
Presenter: Mina Hong, Park Systems Corporation
Authors: B. Kim, Park Systems Corporation
M. Hong, Park Systems Corporation
G. Pascual, Park Systems Corporation
K. Lee, Park Systems Corporation
Correspondent: Click to Email

Collagen is a protein that provides structure in various connective tissues in animals and can be found in ligaments, tendons, and skin. The characterization of collagen’s mechanical properties at nanoscale can potentially reveal significant insights into the causes of macroscale phenomena such as the elasticity of skin and its degradation as we age. One tool that has been used to acquire nanoscale data of collagen is the atomic force microscope (AFM). Conventional AFM techniques based on force-volume spectroscopy have been used to analyze the topography and mechanical properties of collagen. However, these techniques are extremely time-consuming—acquisition of a quantifiable elasticity map can take hours to complete. A new AFM-based nanomechanical mode has been developed to address this drawback and can perform the same task significantly faster without sacrificing resolution. Our investigation revealed that our sample collagen bundles had diameters ranging from 60 to 600 nm and an average elastic modulus of about 1.9 GPa, a value in agreement with other reported research. The total time taken to acquire this data was measured in minutes as opposed to hours.