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8:00am  NS+AS+EM+MI+SP+SS-ThM1  Characterizing 

Optoelectronically-Active Molecules via STM Imaging and Advanced 

Raman Spectroscopy Techniques, J. Schultz, P. Whiteman, Z. Porach, Nan 

Jiang, University of Illinois at Chicago 

In response to the ever increasing demand for cleaner, cheaper energy 
generation, significant efforts have been made to fabricate and characterize 
materials that can be used for optoelectronic devices. Porphyrins, 
phthalocyanines, and their derivatives have been involved in many surface 
studies to investigate their optoelectronic properties for use in organic 
photovoltaics and other optoelectronic devices, such as organic light-emitting 
diodes (OLED). Our research take place in a commercial ultrahigh vacuum 
(UHV) scanning tunneling microscopy (STM) chamber. Molecules were 
evaporated onto various single crystal substrates at a base pressure of 10-10 
torr. Different surface-supported structures were imaged via STM at sub-
molecular resolution, allowing the competition of molecule-substrate and 
molecule-molecule interactions to be investigated. 
In addition to imaging via STM, we also performed spectroscopy 
experiments in the forms of UHV Tip Enhanced Raman Spectroscopy 
(TERS), supplementing vital vibrational information at single-molecule 
spatial resolution. These tools provide a complete picture of the system in 
question, allowing our lab to answer previously unknown questions regarding 
the molecule-molecule interactions in order to characterize the molecule’s 
exciton-generating and electron-transferring properties at a fundamental 
level. 

8:20am  NS+AS+EM+MI+SP+SS-ThM2  BCC to FCC Phase Transition 

of PdxCu1-x at Nanoscale, Xiaoxiao Yu, Carnegie Mellon University, A. 
Gellman, Carnegie Mellon University, W.E. Scott Institute for Energy 
Innovation 

One of the most interesting characteristics of alloy nanoparticles (NPs) is that 
they can have different phases from those of the bulk. In the bulk phase 
diagram of PdxCu1-x, there exists a composition range, 0.35 < x < 0.55, over 
which a B2 phase (ordered body centered cubic, CsCl structure) is formed at 
T < 873 K, in spite of the fact that pure Pd and Cu both have face centered 
cubic (FCC) bulk crystal structures. An experimental methodology has been 
developed for determining the phase behavior of PdxCu1-x size and 
composition spread nanoparticle (SCSNP) libraries. Spatially resolved X-ray 
photoemission spectroscopy (XPS) was used to map the Cu 2p3/2 core level 
shifts (CLS) with respect to the value for pure Cu across composition space 
on the bulk PdxCu1-x alloy. The result has shown that the Cu 2p3/2 binding 
energy decreases monotonically with increasing Pd at.% in the FCC phase. 
There is additional discontinuous CLS over the composition range from 0.35 
to 0.55 Pd at.%, where the B2 phase forms. Therefore, the Cu 2p3/2 core level 
binding energy measured by XPS can be used to distinguish between the 
ordered B2 phase and disordered FCC phase. The PdxCu1-x SCSNP library on 
a Mo substrate was prepared using a rotatable shadow mask deposition tool 
previously developed by our group. After annealing the PdxCu1-x alloy thin 
film to 700 K, the additional CLS over the composition range, 0.35 < x < 
0.55, has been observed at a film thickness > 6 nm, which suggests the 
formation of B2 phase. However, at a film thickness between 4 – 6 nm, the 
Cu 2p3/2 binding energy decreases monotonically across composition space 
which suggests that only FCC phase exists for alloy films in this thickness 
range. Because the FCC phase is more densely packed than the B2 phase, the 
surface tension in this thickness regime can drive a conversion from the 
ordered B2 phase back to the randomly distributed FCC solid solution. More 
interestingly, the additional CLS over the composition range from 0.35 to 
0.55 Pd at.% reoccurs at a film thickness < 4 nm, which suggests the 
formation of B2 phase. This observation is the result of dewetting of the 
PdxCu1-x NPs after heating at 700 K for 30 mins, and the size of dewetting 
NPs exceeds 6 nm where the close-packed FCC phase is stabilized. 
Dewetting of PdxCu1-x NPs is validated by the appearance of the substrate Mo 
XPS signal at a film thickness < 4 nm. This comprehensive experimental 
study of the phase behavior for PdxCu1-x alloy NPs will be correlated with 
their catalytic activity across composition and size spaces to accelerate the 
development of alloy NPs for catalytic applications. 

8:40am  NS+AS+EM+MI+SP+SS-ThM3  Hybrid Environmental 

Transmission Electron Microscope: An Integrated Platform for In situ 

Imaging and Spectroscopies, Renu Sharma, NIST INVITED 

Environmental transmission electron microscopes (ETEM) and TEM holders 
with windowed reaction cells, enable in situ measurements of the dynamic 
changes occurring during gas-solid and/or liquid-solid interactions. The 
combination of atomic-resolution images and high spatial and energy 
resolution has successfully revealed the nucleation and growth mechanisms 
for nanoparticles, nanowires, carbon nanotubes and the functioning of 
catalyst nanoparticles. While TEM-based techniques are ideally suited to 
distinguish between active and inactive catalyst particles and identify active 
surfaces for gas adsorption, we still must answer the following questions: (1) 
Are our observations, made from an area a few hundred nanometers in extent, 
sufficiently representative to determine the mechanism for a specific 
reaction? (2) Is the reaction initiated by the incident electron beam? (3) Can 
we determine the sample temperature accurately enough to extract 
quantitative kinetic information? And (4), can we find efficient ways to make 
atomic-scale measurements from the thousands of images collected using a 
high-speed camera. The lack of global information available from TEM 
measurements is generally compensated by using other, ensemble 
measurement techniques such as x-ray or neutron diffraction, x-ray 
photoelectron spectroscopy, infrared spectroscopy, Raman spectroscopy etc. 
However, it is almost impossible to create identical experimental conditions 
in two separate instruments to make measurements that can be directly 
compared.  
We have designed and built a unique platform that allows us to concurrently 
measure atomic-scale and micro-scale changes occurring in samples 
subjected to identical reactive environmental conditions by incorporating a 
Raman Spectrometer into the ESTEM. We have used this correlative 
microscopy platform i) to measure the temperature from a 60 µm2 area using 
Raman shifts, ii) to investigate light/matter interactions in plasmonic particles 
iii) to act as a heating source, iii) to perform concurrent optical and electron 
spectroscopies such as cathodoluminescence, electron energy-loss 
spectroscopy and Raman. We have developed an automatic image-processing 
scheme to measure atomic positions, within 0.015 nm uncertainty, from high-
resolution images, to follow dynamic structural changes using a combination 
of algorithms publicly available and developed at NIST. This method has 
been proven to capture the crystal structure fluctuations in a catalyst 
nanoparticle during growth of single-walled carbon nanotube (SWCNT). 
Details of the design, function, and capabilities of the optical spectrum 
collection platform and image processing scheme will be presented. 

9:20am  NS+AS+EM+MI+SP+SS-ThM5  Critical Dimension Metrology 

by Localization Optical Microscopy, C.R. Copeland, C.D. McGray, J.C. 
Geist, J.A. Liddle, B.R. Ilic, Samuel Stavis, NIST 

Optical microscopy methods of localizing subresolution emitters are broadly 
useful in many fields from biology to nanofabrication. Precision and accuracy 
are fundamental for localization measurements. Subnanometer precision is 
readily achievable for many emitters and can elucidate structure and motion 
at atomic scales, but is potentially false precision in the absence of 
calibrations that enable corresponding accuracy, particularly over a wide field 
for imaging and tracking. Whereas improving localization precision 
generally requires counting more photons by increasing emitter intensity and 
stability, improving localization accuracy presents diverse challenges in the 
calibration of an optical microscope as a measurement system. This involves 
not only its discrete components but also their interaction during a 
measurement. Such calibration is complex, motivating the development of 
practical devices and methods to facilitate the process, which we present here. 
First, we characterize a complementary metal oxide semiconductor (CMOS) 
camera, enabling full use of its dynamic range and megapixel array. Next, we 
fabricate aperture arrays by electron-beam lithography and test them as 
calibration devices, exploiting their uniformity and stability. Then, we refine 
localization analysis, presenting a novel estimator and accommodating 
saturation. Finally, we evaluate aberrations of our optical system, including 
field curvature, distortion, and others that break the symmetry of the point 
spread function. After calibrating our system in this way, we validate our 
widefield measurements and demonstrate critical dimension localization 
microscopy (CDLM) of aperture arrays, and answer open questions about the 
apparent motion of nanoparticle fiducials. Our study casts new light on 
localization microscopy at subnanometer scales. 

Our study also highlights the importance of nanoscale fabrication and 
metrology in achieving localization accuracy. Previous studies have applied 
aperture arrays for lens evaluation but have not quantified their critical 
dimensions, in particular the array pitch. This is essential to ensure that 
electron-optical aberrations do not propagate as errors through the calibration 
and correction of photon-optical aberrations. Moreover, the application of 
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CDLM to aperture arrays provides useful information on the effects of dose 
delivery and beam scanning to optimize the future nanofabrication of 
reference materials. 

9:40am  NS+AS+EM+MI+SP+SS-ThM6  Tunable Emission from 

Nanophotonic Structures in a Modified SEM: Characterizing Smith 

Purcell Radiation Generation from the VUV to the Near IR, Steven Kooi, 
I. Kaminer, A. Massuda, M. Soljačić, C. Roques-Carmes, MIT 

We present theoretical predictions and experimental results of multiple order 
Smith-Purcell radiation in a variety of samples from periodic high aspect ratio 
silicon nanowire structures to engineered metasurfaces using low-energy 
electrons (2.5 -20 keV) in a modified scanning electron microscope. The 
samples emit photons in a controlled way and we demonstrate optical 
emission from the VUV to the near IR, opening a pathway to building a fully 
tunable optical source that we intend to extend into the soft X-Ray regime. 

11:00am  NS+AS+EM+MI+SP+SS-ThM10  Ultrafast Optical Response 

of Graphene/LaAlO3/SrTiO3 Heterostructure, L. Chen, E. Sutton, J. Li, M. 
Huang, J.F. Hsu, B. D'Urso, University of Pittsburgh, J.W. Lee, H. Lee, C.B. 
Eom, University of Wisconsin-Madison, P. Irvin, Jeremy Levy, University 
of Pittsburgh INVITED 

The unique electronic and optical properties of graphene make it a promising 
device in terahertz(THz) regime. Another 2D electron system, the complex-
oxide heterostructure LaAlO3/SrTiO3, has been shown to exhibit great 
promise for control and detection of broadband THz emission at extreme 
nanoscale dimensions1. Recently, we have successfully integrated these two 
platforms: we have created graphene/LaAlO3/SrTiO3 structures with (1) high 
mobility in the graphene channel2 and (2) oxide nanostructures patterned 
directly underneath the graphene layer3. Here we describe new experiments 
that probe graphene with this nanoscale THz spectrometer using ultrafast 
optical techniques. This unprecedented control of THz radiation at 10 nm 
length scales creates a pathway toward hybrid THz functionality in 
graphene/LaAlO3/SrTiO3 heterostructures. 
We gratefully acknowledge financial support from the following agencies 
and grants: AFOSR FA9550-12-1-0268 (JL, PRI), AFOSR FA9550-12-1-
0342 (CBE)), ONR N00014-13-1-0806 (JL, CBE), NSF DMR-1234096 
(CBE), ONR N00014-15-1-2847 (JL) and N00014-16-3152 (JL). 

1.Y. Ma, M. Huang, S. Ryu, C. W. Bark, C.-B. Eom, P. Irvin and J. Levy, 
NanoLett.13, 2884−2888 (2013). 

2.G. Jnawali, M. Huang, J.-F. Hsu, H. Lee, J.-W. Lee, P. Irvin, C.-B. Eom, 
B. D'Urso and J. Levy, Adv. Mater. 29, 1603488 (2016).  

3.M. Huang, G. Jnawali, J.-F. Hsu, S. Dhingra, H. Lee, S. Ryu, F. Bi, F. 
Ghahari, J. Ravichandran, L. Chen, P. Kim, C.-B. Eom, B. D’Urso, P. Irvin 
and J. Levy, APL Materials3, 062502 (2015). 

4.C. Cen, S. Thiel, G. Hammerl, C.W. Schneider, K.E. Andersen, C.S. 
Hellberg, J. Mannhart, J. Levy, Nature Materials 7, 298 (2008). 

5.G. Jnawali, L. Chen, M. Huang, H. Lee, S. Ryu, J. P. Podkaminer, C. B. 
Eom, P. Irvin and J. Levy, APL 106, 211101 (2015). 

11:40am  NS+AS+EM+MI+SP+SS-ThM12  Single-Molecules 

Fluorescence Spectroscopy and Lifetime with Simultaneous Super-

resolution Imaging for Materials Science Applications, James Marr, 
CNST/NIST and University of Maryland, M. Davanço, CNST/NIST, S.J. 
Stranick, NIST, B.R. Ilic, J.A. Liddle, CNST/NIST 

We have developed a widefield imaging system that measures single-
molecule position, orientation, lifetime and fluorescence spectra. We achieve 
this by combining conventional super-resolution imaging using an sCMOS 
detector with a unique, photon-counting, wide-field, high-temporal, high-
spatial resolution, high-throughput, three-dimensional detector (H33D). The 
use of dual-objectives maximizes the fluorescent photon flux to each camera. 
Individual fluorophore point-spread functions collected by the sCMOS 
detector provide position and orientation information, while the 100 ps timing 
resolution of the H33D detector enables us to make precise lifetime 
measurements of the same fluorophore. By incorporating a diffraction grating 
into the beam path of the sCMOS camera we can simultaneously record both 
a zero-order image of each fluorophore for position and orientation 
measurement, and a wavelength-dispersed image that provides single-
molecule spectroscopic data. The sensitivity of fluorophore lifetime, 
spectroscopic behavior, orientation, and position to dynamic processes in soft 
materials with nanosecond, millisecond, and second timescales, respectively, 
enables us to collect three-dimensional, local structure-property information 
that would otherwise be impossible to obtain. We have fabricated unique 
structures that enable us to accurately determine the influence of metallic and 
high-refractive index materials on fluorophore lifetime and point-spread 
function shape. Our far-field system, combined with these nanoengineered 
structures, permit minimally-perturbative measurements to be made on 
individual fluorophores. We apply our imaging system to probe the nanoscale 
behavior of polymers in nanocomposite materials and to investigate 

fluorophore response to structured samples consisting of thin, high-refractive 
index materials. 

12:00pm  NS+AS+EM+MI+SP+SS-ThM13  Atomic Scale Surface Effects 

of Controlled Crystal Structure in III-V Semiconductor Nanowires: 

Preferential Surface Alloying and Local Electronic Properties., J. 
Knutsson, M. Hjort, Lund University, Sweden, P. Kratzer, University 
Duisburg-Essen, Germany, J. Webb, S. Lehmann, K.D. Thelander, Lund 
University, Sweden, C.J. Palmstrom, UCSB, R. Timm, Anders Mikkelsen, 
Lund University, Sweden 

Despite the many III-V nanowire (NW) technologies under current 
development, be it solar cells and light emitting diodes or high speed/low 
power electronics, there are still only few studies of their surfaces. The atomic 
scale structure and morphology of NW surfaces are however central in 
determining their functionality, due to the inherently large surface to bulk 
ratio. In addition, III-V NWs can be tailored with segments of both the cubic 
zinc blende (ZB) and hexagonal wurtzite (WZ) structures and in a variety of 
materials combinations. This allow experimental access to nanocrystallite 
surfaces and interfaces not found in the bulk. We have demonstrated 
atomically resolved Scanning Tunneling Microscopy/Spectroscopy (STM/S) 
on a wide variety of these III-V NWs and on operational NW devices [1-5]. 
We now use these methods for studying atomic scale surface structural 
changes and impact on local electronic properties on both GaAs and InAs 
NWs at room temperature and at 5K.  
We explore the surface diffusion and alloying of Sb into GaAs NWs with 
controlled axial stacking of Wz and Zb crystal phases. We find that Sb 
preferentially incorporates into the surface layer of the -terminated Zb 
segments rather than the -terminated Wz segments. Density functional theory 
calculations verify the higher surface incorporation rate into the Zb phase and 
find that it is related to differences in the energy barrier of the Sb-for-As 
exchange reaction on the two surfaces. These findings demonstrate a simple 
processing-free route to compositional engineering at the monolayer level 
along NWs. 

Using low temperature STM/S we measure local density of states of atomic 
scale tailored Zb segments in Wz InAs nanowires down to the smallest 
possible crystal lattice change. We find that Zb crystal phase signatures can 
be seen in the density of states both on the conduction and valence band sides 
as well as in the band positions down to the smallest possible Zb segment. 
Additionally we find indications of confined state effects due to the 
difference in bandgap between Wz and Zb. Finally we explore the stability 
of InAs NWs with atomic scale STM during the application of voltages 
through the NWs in a device configuration. We observe that applying realistic 
voltages to InAs NWs results in removal of atomic scale defects and 
smoothening of the morphology.  

[1] E. Hilner et al., Nano Letters, 8 (2008) 3978; M. Hjort et al., ACS Nano 
6, 9679 (2012) 

[2] M. Hjort et al., Nano Letters, 13, 4492 (2013) 

[3] M. Hjort et al., ACS Nano, 8 (2014) 12346 

[4] J. L. Webb, et al Nano Letters 15 (2015) 4865 

[5] J. L. Webb et al., Nano Research, 7 (2014) 877 

[6] O. Persson et al., Nano Letters 15 (2015) 3684 
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