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8:20am  EL+AS+EM+TF-MoM1  Ultra-thin Plasmonic Metal Nitrides: 

Optical Properties and Applications, Alexandra Boltasseva, Purdue 
University INVITED 

Transition metal nitrides (e.g. TiN, ZrN) have emerged as promising 
plasmonic materials due to their refractory properties and good metallic 
properties in the visible and near infrared regions. Due to their high melting 
point, they may be suitable for high temperature nanophotonic applications. 
We have performed comprehensive studies of the temperature induced 
deviations to the dielectric function in TiN thin films. The studies were 
conducted on 30 nm, 50 nm, and 200 nm TiN films on sapphire substrates at 
temperatures up to 900 0C in the wavelength range 350-2000 nm using a 
custom built in-situ high temperature ellipsometry setup. The results were 
fitted with a Drude-Lorentz model consisting of one Drude oscillator and 2 
Lorentz oscillators. As the temperature is elevated, the real and imaginary 
parts both begin to degrade. However, the deviations to the optical properties 
of TiN are significantly smaller compared to its noble metal counterparts, 
with no structural degradation in the TiN films. In addition to high 
temperature applications, TiN could also be a potential material platform for 
investigating light-matter interactions at the nanoscale, since high quality, 
continuous films of TiN can be grown on substrates such as MgO and c-
sapphire down to just a few monolayers. Ultrathin TiN films with thicknesses 
of 2, 4, 6, 8, and 10 nm were grown on MgOusing DC reactive magnetron 
sputtering, resulting in high quality films with low roughness. The changes 
in the linear optical properties were investigated using variable angle 
spectroscopic ellipsometry at angles of 50° and 70° for wavelengths from 400 
nm to 2000 nm. A Drude-Lorentz model consisting of one Drude oscillator 
and one Lorentz oscillator was used to fit the measurements. As the thickness 
decreased, an increase in the losses and a decrease in the plasma frequency 
was observed. However, the films remained highly metallic even at 2nm, 
demonstrating that they could be used for nanophotonicapplications, 
including nonlinear optical devices and actively tunable plasmonic devices. 

9:00am  EL+AS+EM+TF-MoM3  Magnetron Sputtering of TiN 

Coatings: Optical Monitoring of the Growth Process by Means of 

Spectroscopic Ellipsometry, Jiri Bulir, J. More Chevalier, L. Fekete, J. 
Remiasova, M. Vondracek, M. Novotny, J. Lancok, Institute of Physics 
ASCR, Czech Republic 

The plasmonic applications requires search for novel materials with metal-
like optical properties and low optical losses. Transition metal nitrides such 
as TiN, TaN, ZrN, HfN, NbN exhibit metallic properties depending on 
concentration of free-carrier of charge. Their plasmonic properties can be 
tuned by deposition parameters controlling the film structure and the 
stechiometry. 
In this work, we deal with study of growth process of TiN films. The films 
are grown by RF magnetron sputtering on fused silica, silicon and MgO 
substrates at substrate temperature ranging from 20°C to 600°C. The growth 
process is monitored using in-situ spectral ellipsometer in spectral range from 
245 to 1690 nm. The ellipsometric data, which are obtained during the 
deposition process, are attentively analysed using mathematical models based 
on Drude-Lorentz oscillators.  

The Lorentz oscillators are used for description of interband transition in 
ultraviolet and visible spectral range, whereas the Drude oscillator describes 
the free-electron behavior in the infrared spectral range. We show that the 
free-electron behavior is affected by thickness of the ultrathin coatings due to 
electron scattering effects at the interfaces. Number of physical parameters 
such as free-electron concentration, Drude relaxation time and electrical 
conductivity is estimated at each stage of the deposition process by analysis 
of dielectric functions using the mentioned model. The resulting evolution of 
the electrotransport properties during the TiN film growth is presented. 
Special attention is devoted to the initial nucleation stage when the free-
electron behaviour is significantly influenced by the interface between the 
substrate and the TiN film. Based on evolution of electrotransport properties, 
we discuss differences between polycrystalline growth of TiN film on Si and 
fused silica substrates and epitaxial growth on MgO substrates. 

The accomplished TiN coatings are analyzed using infrared ellipsometer 
operating in spectral range from 1.7μm to 30μm where the optical constants 

are infuenced most importantly by free-electron behaviour. The obtained 
results are compared with those obtained by the in-situ ellipsometer. Special 
attention is focused on scattering of free electrons at grain boundaries and at 
the TiN layer interfaces. The estimated parameters are correlated with 
structure changes such as grain coarsening and surface morphology. The 
crystallinity is analysed by X-ray Difractometry. The surface morphology of 
the completed coatings is studied using Atomic Force Microscopy and 
Scanning Electron Microscopy. The TiN film stechiometry is estimated by 
X-ray Photoemission Spectroscopy. 

9:20am  EL+AS+EM+TF-MoM4  Variable Temperatures Spectroscopic 

Ellipsometry Study of the Optical Properties of InAlN/GaN Grown on 

Sapphire, Y. Liang, Guangxi University, China, H.G. Gu, Huazhong 
University of Science and Technology, China, J. Xue, Xidian University, 
China, Chuanwei Zhang, Huazhong University of Science and Technology, 
China, Q. Li, Guangxi University, China, Y. Hao, Xidian University, China, 
S.Y. Liu, Huazhong University of Science and Technology, China, Q. Yang, 
L. Wan, Z.C. Feng, Guangxi University, China 

Indium aluminum nitride (InAlN), a prospective material for lattice matched 
confinement layer, possesses the potential to improve the reliability and 
performance of high electron mobility transistors (HEMTs).[1] One of the 
important advantages of InAlN alloy is the possibility of growing in-plane 
lattice-matched to GaN for an indium content of around 17%. However, the 
bandgap we expected is hindered by the growth of high-quality InAlN films 
due to the phase separation and nonuniform composition distribution.[1-2]  
In this work, InAlN/GaN heterostructures, grown by pulsed metal organic 
chemical vapor deposition (PMOCVD) on c-plane sapphire substrates, were 
investigated by a dual rotating-compensator Mueller matrix ellipsometer 
(ME-L ellipsometer, Wuhan Eoptics Technology Co. Ltd., China). The 
experimental data (Ψ and ∆), covering the wavelength (λ) range from 193 nm 
up to 1700 nm at 1 nm step or energy (E) from 0.73 eV to 6.43 eV, were 
obtained by variable temperatures spectroscopic ellipsometric (VTSE) in 
three angles (50°, 55° and 60°). The Eoptics software was utilized to fit VTSE 
data using Tauc-Lorentz multiple oscillator modes. By analyzing the fitting 
results, the optical constants of the InAlN at variable temperatures (25℃-
600℃) were obtained. The peak value of the refractive index increases from 
269 nm to 284 nm with increasing temperature. The bandgaps are 4.57 eV 
and 4.35 eV at the temperature 25℃and 600℃, respectively. These results 
demonstrated that InAlN/GaN has a high thermal stability, scilicet no 
significant performance degradation in high temperature environment. 

Reference 

[1] Wenyuan Jiao, Wei Kong, Jincheng Li et al, Characterization of MBE-
grown InAlN/GaN heterostructures valence band offsets with varying In 
composition, AIP ADVANCES 6, 035211 (2016). 

[2] JunShuai Xue, JinCheng Zhang, Yue Hao, Investigation of TMIn pulse 
duration effect on the properties of InAlN/GaN heterostructures grown on 
sapphire by pulsed metal organic chemical vapor deposition, Journal of 
Crystal Growth 401, 661 (2014). 

9:40am  EL+AS+EM+TF-MoM5  Optical Properties of Cs2AgIn(1-x)BixCl6 

Double Perovskite Studied by Spectroscopic Ellipsometry, Honggang 

Gu, S.R. Li, B.K. Song, J. Tang, S.Y. Liu, Huazhong University of Science 
and Technology, China 

During the past several years, the organic-inorganic lead halide perovskites 
(APbX3, A = CH3NH3 or NH2CHNH2, X = Cl, Br, or I) have been promising 
materials for photovoltaic, photoelectric -detecting and light-emitting devices 
due to their outstanding photoelectric properties, such as broad absorption 
range, high quantum efficiency, ultrafast charge generation, high charge 
carrier mobility and long charge carrier lifetime and diffusion length. 
However, there are two remaining challenges that need to be addressed in 
order to apply these materials to photoelectric productions, namely the 
compound stability and the presence of lead. Most recently, lead-free metal 
halide double perovskites, such as Cs2AgBiCl6 and Cs2AgInCl6, have 
attracted extensive attention because of their nontoxicity and relative air-
stability. In the study and application of these perovskite materials, the 
knowledge of their optical properties, such as the bandgap and the basic 
optical constants, is of great importance to predict the photoelectric 
characteristics and dig the potential of the materials. 
Spectroscopic ellipsometry (SE) has been developed as a powerful tool to 
characterize the optical properties as well as structure parameters of novel 
materials, thin films and nanostructures. In this work, we study the optical 
properties of Cs2AgIn(1-x)BixCl6 perovskites by a spectroscopic ellipsometer 
(ME-L ellipsometer, Wuhan Eoptics Technology Co., Wuhan, China). The 
refractive index and the extinction coefficient of Cs2AgIn(1-x)BixCl6 with 
different composition coefficient x of bismuth are determined by the 
ellipsometer over the wavelength range of 250-1000nm. We find that the 
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presence of bismuth introduces two critical points in the optical constant 
spectra of the perovskites, i.e., 315nm and 382nm in the refractive index 
spectra and 300nm and 375nm in the extinction coefficient spectra, 
respectively. Moreover, there is a red shift in the bandgaps and significant 
increase in both the refractive index and the extinction coefficient with the 
increase of composition coefficient x of bismuth. 

10:00am  EL+AS+EM+TF-MoM6  Charge Carrier Dynamics of 

Aluminum-doped Zinc Oxide Deposited by Spatial Atomic Layer 

Deposition, Daniel Fullager, G. Boreman, T. Hofmann, University of North 
Carolina at Charlotte, C.R. Ellinger, Eastman Kodak Company 

Transparent conductors for displays, backplanes, touchscreens and other 
electronic devices are an area of active research and development; in this 
manner, aluminum-doped zinc oxide (AZO) has shown promise as an ITO 
replacement for some applications. Although there have been numerous 
reports on the optical properties and electrical conductivity of AZO, there has 
not yet been a Kramers-Kronig consistent dispersion model fully describing 
the charge carrier dynamics. In this presentation, we will report on the model 
dielectric function of AZO from the combination of UV-Vis and IR 
spectroscopic ellipsometry. A model dielectric function that describes the 
optical response over this wide spectral range will be presented and 
discussed. In particular, we will present a comparison between the commonly 
used extended Drude models and the dielectric function developed here in 
light of results obtained from density functional theory calculations.  
The AZO films analyzed in this study were deposited using a spatial atomic 
layer deposition (SALD) process. While AZO can be deposited by several 
techniques, including sputtering, chemical vapor deposition (CVD), and 
atomic layer deposition (ALD), ALD does allow for the greatest ability to 
control the aluminum-doping level of AZO. However, the range of substrate 
sizes and form factors addressable by traditional chamber ALD are limited. 
Conversely, spatial ALD (SALD) is an atmospheric pressure, roll-compatible 
ALD process that enables the materials property control of ALD to be 
translated into a wider range of applications spaces. Furthermore, the use of 
selective area deposition in a “patterned-by-printing” approach enables the 
high-quality AZO deposited by SALD to be easily patterned, offering an 
integrated and facile path for manufacturing optical and electronic devices. 

10:40am  EL+AS+EM+TF-MoM8  Broad Range Ellipsometry Shining 

Light onto Multiphase Plasmonic Nanoparticles Synthesis, Properties 

and Functionality, Maria Losurdo, CNR-NANOTEC, Italy INVITED 

How rich are the physics, interface chemistry and optical properties 
associated with the surface plasmons of metal nanostructures and their 
potential for manipulating light at the nanoscale! For many technological 
applications nanoparticles (NPs) are supported on a substrate, and at the 
nanoscale, interaction and interfaces with the support become very important. 
We have demonstrated that the substrate/NPs interaction is the key to 
engineering not only the shape but also the crystalline phase of NPs.  
This contribution will present and explore fundamental and applied aspects 
of multiphase core-shell plasmonic NPs supported on substrates of 
technological interest using various diagnostic tools, which comprise: (i) 
spectroscopic ellipsometry spanning the THz, IR, visible, and UV 
wavelength ranges, (ii) variable angle Muller Matrix ellipsometry to qualify 
size effects on anisotropy and depolarization of samples, (iii) in-situreal-time 
spectroscopic ellipsometry to understand growth and tailor particle size 
which ultimately controls the plasmon resonance, and (iv) various imaging 
and microscopies techniques to elucidate the interplay between the 
nanostructure of multiphase nanoparticle and their functionality.  

The case studies involve liquid-shell/solid-core plasmonic NPs (Ga, Ga/Mg), 
plasmon-catalytic core/shell Ga/Pd and plasmon-magnetic Ni/Ga NPs 
supported on various substrates (glass, plastics, sapphire) that control their 
crystalline phases.  

We will start with a description of the real-time ellipsometry capabilities in 
monitoring the growth of those multiphase core/shell NPs to detect the 
formation of the various phases in situ and to control the resulting plasmon 
resonance. 

The discussion then will shifts to a description of fundamental of 
thermodynamics of substrate supported multiphase NPs and how their growth 
dynamics is controlled by the interface energies, and how those new 
phenomena can be highlighted by real-time ellipsometry. 

Ex-situ corroborating measurements of Mueller-matrix ellipsometry and 
hyperspectral cathodoluminescence spectroscopy and imaging will be 
presented to discuss phenomena of depolarization and of interaction of NPs 
resulting from the self-assembly.  

Finally, since those NPs enable active plasmonics, we demonstrate the 
implications of the multi-phase nature of NPs, as well as solid-liquid phase 
coexistence on the plasmon resonance (LSPR) of supported NPs and on its 
exploitation to follow in real time phenomena in their application in catalysis 

(hydrogen storage and sensing) and optomagnetism and possible future 
directions. 

The contribution of the H2020 European programme under the project 
TWINFUSYON (GA692034) is acknowledged  

11:20am  EL+AS+EM+TF-MoM10  Use of Evolutionary Algorithms for 

Ellipsometry Model Development and Validation using Eureqa, Neil 

Murphy, Air Force Research Laboratory, L. Sun, General Dynamics 
Information Technology, J.G. Jones, Air Force Research Laboratory, J.T. 
Grant, Azimuth Corporation 

Eureqa, developed by Nutonian Inc., is a proprietary modeling engine based 
on automated evolutionary algorithms. In this study, we utilized Eureqa to 
parameterize both the amplitude and phase difference data for reactively 
sputtered thin films. Specifically, evolutionary algorithms are used to develop 
and validate models for fitting raw ellipsometric data for a variety of optical 
materials including SiO2, Ta2O5, and Aluminum Zinc Oxide. These films, 
deposited using pulsed DC magnetron sputtering, were deposited on both 
silicon and fused quartz substrates, and measured using a J.A. Woollam 
VASE system. The resulting models are then compared to traditional models 
that are currently utilized to fit the candidate materials systems.  

11:40am  EL+AS+EM+TF-MoM11  Excitonic Effects on the Optical 

Properties of Thin ZnO Films on Different Substrates, Nuwanjula 

Samarasingha, Z. Yoder, S. Zollner, New Mexico State University, D. Pal, 
A. Mathur, A. Singh, R. Singh, S. Chattopadhyay, Indian Institute of 
Technology Indore, India 

The presence of excitonic features in the optical constants of bulk 
semiconductors and insulators has been known for many years. In Si, Ge, and 
GaAs, the E1 critical points are strongly enhanced by two-dimensional 
excitons. Three-dimensional excitons have been seen in ellipsometry spectra 
for GaP and Ge. In addition to these semiconductors, wide band gap materials 
like ZnO exhibit strong excitonic features in the dielectric function (ε) which 
is directly related to the electronic band structure. The top valence band at the 
Γ point in the Brillouin zone is split into three bands by spin orbit and crystal 
field splitting. The corresponding free exciton transitions between the lowest 
conduction band and these three valence bands are denoted by A, C (Γ7 
symmetry) and B (Γ9 symmetry). The transition from the B subband is 
forbidden for light polarized parallel to the optical axis (extraordinary 
dielectric function). ZnO is attractive for optoelectronic device applications 
due to its large excitonic binding energy of 60 meV at room temperature.The 
influence of this excitonic absorption on ε was described by Tanguy [1]. 
Here we investigate the behavior of excitons in c-oriented ZnO thin films 
grown on Si (smaller band gap than ZnO) and SiO2 (larger band gap than 
ZnO) substrates using variable angle spectroscopic ellipsometry and FTIR 
ellipsometry. We also performed X-ray diffraction (XRD), X-ray reflectivity 
(XRR), and atomic force microscopy (AFM) to characterize the structural 
properties of our ZnO films. 

In a thin epitaxial layer on a substrate with a different band gap, the wave 
functions of the electron and hole are strongly modified. In ZnO (band gap 
3.37 eV) grown on a large-gap SiO2 substrate (type-I quantum well), both the 
electron and the hole are confined, which leads to an increase in the dipole 
overlap matrix element. Therefore, the real and imaginary part of ε of thin 
ZnO layers on SiO2 are much larger than in the bulk and increase 
monotonically with decreasing thickness. 

On the other hand, in a staggered type-II quantum well (ZnO on Si), either 
the electron is confined, or the hole, but not both. Therefore, the overlap 
dipole matrix element is strongly reduced. Therefore, ε of thin ZnO layers on 
Si is much smaller than in the bulk and decreases monotonically with 
decreasing thickness. We will fit our ellipsometric spectra by describing the 
dielectric function of ZnO using the Tanguy model [1]. We will analyze the 
dependence of the excitonic Tanguy parameters on quantum well thickness 
and substrate material. 

Reference: 

[1] C. Tanguy, Phys. Rev. Lett. 75, 4090 (1995). 
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