AVS 64th International Symposium & Exhibition
    Magnetic Interfaces and Nanostructures Division Monday Sessions
       Session MI+BI+EM+SA-MoA

Invited Paper MI+BI+EM+SA-MoA8
Utilizing the Chiral induced Spin Selectivity Effect to Achieve Simple Spintronics Devices

Monday, October 30, 2017, 4:00 pm, Room 11

Session: Role of Chirality in Spin Transport and Magnetism
Presenter: Yossi Paltiel, The Hebrew University of Jerusalem, Israel
Correspondent: Click to Email

With the increasing demand for miniaturization, nano-structures are likely to become the primary components of future integrated circuits. Different approaches are being pursued towards achieving efficient electronics, among which are spin electronics devices (spintronics) [1]. In principle, the application of spintronics should result in reducing the power consumption of electronic devices.

A new, promising, effective approach for spintronics has emerged using spin selectivity in electron transport through chiral molecules, termed Chiral-Induced Spin Selectivity (CISS) [2]. Recently, by utilizing this effect we demonstrated a magnet-less magnetic memory [3,4]. Also we achieve local spin-based magnetization generated optically at ambient temperatures [5,6]. The locality is realized by selective adsorption of the organic molecules and the nano particles [7]. Lastly we have been able to show chiral proximity induced magnetization on the surface of ferromagnetic and superconducting materials. The magnetization is generated without driving current or optically exciting the system [8,9].

In the talk I will give a short introduction about spintronics and the CISS effect. Then I will present ways achieve simple spintronics devices utilizing the effect.

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger; Science 294 1488 (2001).

[2] B. Göhler,V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne, Z. Vager, R. Naaman, H. Zacharias; Science 331, 894-897 (2011).

[3] O. Ben Dor, S. Yochelis, S. P. Mathew, R. Naaman, and Y. Paltiel Nature Communications 4, 2256 (2013).

[4] G. Koplovitz, D. Primc, O. Ben Dor, S. Yochelis, D. Rotem, D. Porath, and Y. Paltiel; Advanced Materials (2017).

[5] O. Ben Dor, N. Morali, S. Yochelis, and Y. Paltiel; Nano letters 14 6042 (2014).

[6] M. Eckshtain-Levi, E. Capua, S. Refaely-Abramson, S. Sarkar, Y. Gavrilov, S. P. Mathew, Y. Paltiel, Y.V Levy, L. Kronik, R. Naaman; Nature Communications. 7, 10744 (2016).

7] O. Koslovsky, S. Yochelis, N. Livneh, M. Harats, R. Rapaport, and Y. Paltiel, Journal of Nanomaterials 938495 2012 (2012).

[8] H. Alpern, E. Katzir, S. Yochelis, Y. Paltiel, and O. Millo; New J. Phys. 18 113048 (2016).

[9] O. Ben Dor, S. Yochelis, A. Radko, K. Vankayala, E. Capua, A. Capua, S.-H. Yang, L. T. Baczewski, S. S. P. Parkin, R. Naaman, and Y. Paltiel; Nature Communications, 8 14567 (2017).