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8:00am  TF+EM+NS+PS+SM-ThM1  Atomic Layer Deposition of 
Silicon Dielectrics: Precursors, Processes, and Plasmas, Dennis 
Hausmann, Lam Research Corporation INVITED 
As the dimensions of modern semiconductor devices continue to shrink 
below the current 14 nm technology node, novel processes for the 
deposition of highly conformal, low temperature, silicon based dielectrics 
will be needed for applications that include sidewall spacers, barriers, and 
patterning layers. Atomic layer deposition (ALD) is an ideal method for 
achieving the high conformality and has been used in high volume 
manufacturing (HVM) to deposit high-k dielectric materials (HfO2, ZrO2, 
etc.) for several technology generations. Plasma assisted ALD is the best 
known method to meet low temperature (<500⁰C) requirements and is now 
being used for depositing conformal silicon dielectrics such as silicon oxide 
(SiO2) and silicon nitride (Si3N4). 

In this presentation, we discuss the current state of the art of precursors, 
plasmas, and process conditions required to deposit conformal silicon 
dielectrics by plasma ALD. Theoretical and experimental data will be 
presented in order to explain the observed reaction characteristics for the 
plasma ALD of silicon oxide (SiO2), silicon nitride (Si3N4), and the lack (so 
far) of silicon carbide (SiC). Generic to all ALD processes is the high cost 
of the precursors relative to traditional chemical vapor deposition (CVD); in 
the case of silicon dielectric ALD, this is exacerbated by the relative low 
“reactivity to cost ratio” of available silicon precursors. Although plasmas 
enable low temperature deposition, they pose challenges for achieving 
isotropic film properties over the complex topography on today’s 
semiconductor devices. 

8:40am  TF+EM+NS+PS+SM-ThM3  ALD Dielectrics for Power 
Electronics, Veena Misra, NCSU INVITED 
Owing to a high critical electric field and high electron mobility, wide band 
gap materials such as GaN and SiC are being sought for high voltage power 
electronics applications. In the case of GaN devices, the reliability 
continues to be a challenge to must be addressed before successful 
commercialization. In our work, different dielectrics deposited by Atomic 
Layer Deposition (ALD) have been investigated for improving the threshold 
voltage stability and dynamic reliability of AlGaN/GaN based MOSHFETs. 
A novel pulsed-IV-based methodology was developed and demonstrated to 
be applicable for detecting both shallow and deep traps and implemented on 
evaluating different high-k and low-k ALD dielectrics. Using physics-based 
simulation models and experimental data, it was demonstrated that the 
leakage at the surface of the AlGaN, whether through the passivation 
dielectric bulk or the dielectric/AlGaN interface, must be minimized to 
restrict the formation of a “virtual gate” and minimize current collapse. It 
was also found that an optimal passivation dielectric must create a high 
density of shallow interface donor traps to quicken the de-trapping of 
electrons from the “virtual gate” and the recovery of the channel 
underneath. Combining simulation and experimental results, an optimal set 
of ALD dielectrics for a reliable gate stack and access-region passivation 
regions, respectively, was determined and will be discussed. In the area of 
SiC devices, low inversion channel mobility, caused high density of 
interface states (Dit) at SiO2/SiC interface, limits the wide adoption of SiC 
MOS devices. Atomic Layer Deposition offers key advantages in the area 
of gate dielectrics such as good film quality, low substrate damage, superior 
uniformity, precise thickness control, and low process temperature. 
Additionally, deposited SiO2 enables interface engineering to 
independently control the interface properties. To enhance the channel 
mobility and maintain good overall gate dielectric properties, a thin layer of 
a different dielectric material can be inserted to improve interface properties 
and high quality deposited SiO2 can be used as the bulk gate dielectric. We 
have demonstrated a novel interface engineering technique utilizing ultra 
thin lanthanum silicate (LaSiOx) at the SiC/dielectric interface and ALD 
SiO2 as the bulk gate dielectric. The lanthanum silicate interface 
engineering dramatically improves the mobility of 4H-SiC metal oxide 
semiconductor field effect transistors (MOSFETs) and is attributed to the 
large driving force of La2O3 to react with SiO2. 

9:20am  TF+EM+NS+PS+SM-ThM5  Pb(ZrxTi1-x)O3 Magnetoelectric 
Tunnel Junctions for Magnetoelectric RAM (MeRAM) Memory 
Applications, D. Chien, X. Li, K. Wong, P. Khalili, K. Wang, Jane P. 
Chang, University of California at Los Angeles 
As existing memory systems approach fundamental limitations, ultra-thin 
uniform conformal PZT films are needed for next-generation ultralow-
power voltage-controlled non-volatile magnetoelectric RAM (MeRAM) 
memory devices. By utilizing the magnetoelectric effect, where an electric 
field or voltage can be used to control the magnetization switching (instead 
of current), the writing energy can be reduced, resulting in increased 
memory density (Amiri, P.K. et al., Journal of Applied Physics, 2013). 
Previous research has shown that the voltage-controlled magnetic 
anisotropy (VCMA) effect increases with the capacitance of the stack (Kita, 
K. et al., Journal of Applied Physics, 2012). Therefore, integrating an ultra-
thin PZT film (having a dielectric constant 1-2 orders of magnitudes higher 
than currently used MgO) into the tunneling oxide layer will enhance the 
VCMA coefficient, allowing for a lower voltage to switch the 
magnetization of the free magnetic layer and thus decreasing the write 
energy. 

Using atomic layer deposition (ALD), a surface-reaction controlled process 
based on alternating self-limiting surface reactions, an ultra-thin film of 
PZT can be synthesized with precise control of the film thickness and 
elemental composition (Zr/Ti = 52/48). ALD PZT thin films were 
synthesized by depositing alternating layers of PbO, ZrO2, and TiO2 layers 
using Pb(TMHD)2, Zr(TMHD)4, and Ti(O.i-Pr)2(TMHD)2 as metal 
precursors and H2O as the oxidant. The number of local cycles and global 
cycles were regulated to achieve the desired stoichiometry and thickness, 
respectively. The bottom layers of Ta/CoFeB (free magnetic layer)/MgO 
were sputtered, the PZT film with thickness of 1.7 nm was deposited by 
ALD, the top layers of MgO/CoFeB (fixed magnetic layer)/Ta/Pt were 
sputtered, and the entire stack was annealed at 200oC for 30 minutes in 
order to fabricate PZT magnetoelectric tunnel junctions (MEJs). 

The perpendicular magnetic anisotropy (PMA) of the bottom free magnetic 
CoFeB layer was verified via superconducting quantum interference device 
(SQUID) magnetometer, confirming that the ALD PZT deposition process 
is a viable method for synthesizing PZT MEJs. The tunnel 
magnetoresistance (TMR) was measured to be 50%, demonstrating a 
promising read-out process. Due to the integrated ALD PZT layer in the 
tunneling barrier, the VCMA coefficient of PZT MEJ devices is expected to 
be double that measured for CoFeB/MgO/CoFeB devices (ξ = 37 fJ/V.m) 
(Zhu, J. et al., Physical Review Letters, 2012). 

9:40am  TF+EM+NS+PS+SM-ThM6  Plasma-Assisted ALD of High-
Quality Molybdenum Oxide Films, Martijn Vos, B. Macco, N.F.W. 
Thissen, A.A. Bol, W.M.M. Kessels, Eindhoven University of Technology, 
Netherlands 
In this contribution we present a novel plasma-assisted atomic layer 
deposition (ALD) process to deposit high-quality molybdenum oxide films, 
with a high growth per cycle (GPC) over a wide temperature range of 50 °C 
to 350 °C. This process complements existing (thermal) ALD MoOx 

processes, which are less suited for deposition at low temperature, due to 
low GPC and contamination. A decent deposition process is of importance 
as MoOx films have received great interest due to their remarkable 
optoelectronic and catalytic properties and find their use in many 
applications, including solid state lithium batteries, gas sensors, and more 
recently solar cells.  

A variety of deposition techniques exists for the deposition of MoOx, such 
as evaporation, sputtering, chemical vapor deposition and ALD. While 
many of the applications of MoOx films can benefit from the merits of 
ALD, i.e. conformality and digital thickness control, only few ALD 
processes are known from literature [1, 2]. Recently bis(tert-butylimido) 
bis(dimethyamido) molybdenum ((NtBu)2(NMe2)2Mo) appeared as a 
promising precursor for ALD of MoOx films, using O3 as oxidant [2].  

The plasma-assisted ALD process we report on uses (NtBu)2(NMe2)2Mo 
and O2 plasma and shows a relatively high GPC between 0.70 Å and 0.93 Å 
for amorphous films deposited at temperatures up to 250 °C. In comparison, 
the analogous O3 process is featured by a low GPC of 0.17 Å at 150 °C. For 
deposition temperatures above 250 °C polycrystalline growth was observed, 
accompanied by an increase in GPC to 1.88 Å for 350 °C. From Rutherford 
backscattering measurements it was determined that the C and N content in 
the films is below the detection limit (3 at.% and 2 at.% respectively) for all 
deposition temperatures, which demonstrates the high-quality of the films 
(while the aforementioned O3 process resulted in 9.2 at.% N). Furthermore 
the O/Mo ratio was found to be just below 3, indicative of oxygen 
vacancies, which are common for MoOx films and can lead to an increased 
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conductivity, which is beneficial for many applications. Additional material 
properties such as band gap, work function and surface morphology will 
also be discussed and finally an outlook to the application of this ALD 
process in silicon solar cells will be given.  

[1] M. Diskus et al., J. Mater. Chem. 21 (2011) 705 

[2] A. Bertuch et al., J. Vac. Sci. Technol. 32 (2014) 01A119  

11:00am  TF+EM+NS+PS+SM-ThM10  Status and Prospects of 
Plasma-Assisted Atomic Layer Deposition, Harm Knoops, Oxford 
Instruments Plasma Technology, UK, W.M.M. Kessels, Eindhoven 
University of Technology, Netherlands INVITED 
Plasma-assisted atomic layer deposition (ALD) or plasma ALD has 
established itself as a prominent branch in ALD processing and a wide 
range of plasma ALD processes are currently available. Due to the 
complexity of plasmas, plasma ALD is different from thermal ALD in 
various aspects. Even though the main relevant species in plasmas have 
been identified,1 the effects of plasma chemistry and plasma-surface 
interaction need further study. In this contribution an overview on the status 
of plasma ALD is given and the key prospects for plasma ALD are 
highlighted. 

Regarding the current understanding of plasma ALD, three subjects will be 
treated. First the basic plasma species (i.e., radicals, electrons, ions, and 
photons) and their role in plasma ALD will be discussed. For instance, 
potential damage to the surface from photons, but also cases where plasma 
species can repair defects (e.g., N2 plasmas on GaN surfaces).2 Second 
plasma chemistry and potential poisoning or inhibition processes will be 
treated, which can play a big role in the ALD of nitrides and conductive 
films. Third, dissociation in the plasma of reaction products can lead to 
redeposition effects which can have a large influence on for instance SiNx 
and TaNx ALD. 

Several topics will be discussed regarding the prospects for plasma ALD. 
Even though plasma ALD provides additional possibilities, many cases 
exist where material properties or cycle times are still unsatisfactory and 
advances in reactor design such as the capability to provide additional 
energy in the form of a controlled ion bombardment are needed. In addition, 
advanced processing schemes such as 3-step ABC ALD cycles can be 
beneficial as shown by ALD of noble metals at low deposition temperatures 
(e.g., Pt ALD).3 Whether metal films initially grow as continuous films or 
as nanoparticles (as well as the particle size), will depend on the chemistry, 
the surface energy, and the growth temperature. Recently, plasma ALD has 
shown to allow ALD of Ag by spatial ALD at high pressure.4 This case 
shows that more understanding of the plasma is needed because of an 
unexpected decreased growth at long plasma exposures (presumably caused 
by NH3 poisoning). In general, increasing control of the plasma and 
understanding of the relevant processes at the surface and in the plasma will 
be key to further develop plasma ALD. 
1 Profijt et al., JVST A29, 050801 (2011) 
2 Chen et al., Phys. Status Solidi A (2014) / DOI 10.1002/pssa.201431712  
3 Mackus et al., Chem. Mater.25, 1769 (2013) 
4 Van den Bruele et al., JVSTA33, 01A131 (2015) 

11:40am  TF+EM+NS+PS+SM-ThM12  A Novel Plasma-Enhanced 
ALD Process for HfO2 using HfCp(NMe2)3 and O2 Plasma, Akhil 
Sharma, V. Longo, A.A. Bol, W.M.M. Kessels, Eindhoven University of 
Technology, The Netherlands 
In atomic layer deposition (ALD) the associated precursor chemistry has a 
large effect on the quality and properties of the deposited thin films. The 
most commonly used hafnium precursor for ALD of HfO2 is HfCl4. This 
precursor is not ideal for all applications due to possible chlorine 
contamination and the generation of corrosive by-products during the ALD 
process. Organometallic precursors such as Hf(NtMe)4 promise to be a 
better choice but they typically suffer from a limited thermal stability. In 
this context, HfCp(NMe2)3 might offer a better alternative because of its 
higher thermal stability. However, while using H2O as oxygen source in a 
thermal ALD process it yields a low growth rate1. This creates an 
opportunity for studying this precursor in combination with other oxygen 
sources. In this work, we report on the development of a novel plasma-
enhanced ALD (PE-ALD) process using HfCp(NMe2)3 in combination with 
an O2 plasma to deposit HfO2 thin films. To our knowledge, to date, the PE-
ALD for this precursor has not been reported in the literature. 

Our results show that the PE-ALD process offers significant advantages 
over the reported thermal ALD process such as a high growth rate, reduced 
deposition temperature, shorter cycle time and good control over 
composition of the deposited films. In contrast to the thermal ALD process 
using HfCp(NMe2)3 and water1, the PE-ALD process has resulted into a 
wide ALD temperature range (150-400°C) with significantly higher growth 
per cycle values (1.1Å/cycle) and shorter cycle times which ultimately 

improves the wafer throughput. The level of impurities were found to 
decrease with increasing the deposition temperature as concluded from XPS 
and ERD analyses. The concentrations of residual carbon and hydrogen 
reduced from 1.0 at% to 0.2 at% and 3.4 at% to 0.8 at%, respectively, by 
increasing the deposition temperature from 200°C to 400°C. Moreover, 
RBS studies showed an improvement in stoichiometry of HfO2 thin films 
with increase in deposition temperature resulting in a Hf/O ratio of ~0.5 at 
400°C. Furthermore, GI-XRD measurements detected a strong transition 
from amorphous (300°C) to fully crystallized films (400°C), consisting of a 
mixture of monoclinic, tetragonal and cubic phases. These results therefore 
have demonstrated that PE-ALD using HfCp(NMe2)3 and O2 plasma is a 
promising and viable alternative to the thermal ALD process producing 
high quality HfO2 thin films over a wider temperature range and with faster 
cycle times. 

1. Consiglio et al, J. Vac. Sci. Technol. A 30(1), 2012 

12:00pm  TF+EM+NS+PS+SM-ThM13  Conductive Hafnium Nitride 
Layers By Plasma-Assisted Atomic Layer Deposition, Saurabh Karwal, 
B.L. Williams, W.M.M. Kessels, M. Creatore, Eindhoven University of 
Technology, The Netherlands 
Transition metal nitrides (TMNs) have gained much attention in the 
semiconductor industry due to their characteristics such as copper and 
lithium diffusion barriers, metal-like behaviour (i.e. low resistivity) and 
high hardness, mechanical strength and chemical inertness. Among TMNs, 
hafnium nitride exhibits a low bulk resistivity of 33 μΩcm and highest 
negative Gibbs free energy of formation (HfN: -88.2, TiN: -80.4, TaN: -
60.3 kcal/mol) and hence could serve as novel material for several 
applications, such as diffusion barrier and gate electrode in 
microelectronics, and reflective back contact for CIGS solar cells. 

Conductive hafnium nitride thin films were deposited by inductively 
coupled plasma (ICP)- assisted atomic layer deposition using a heteroleptic 
metalorganic hafnium precursor, 
tris(dimethylamino)cyclopentadienylhafnium CpHf(NMe2)3 [TDMACpH] 
and H2-or N2- fed plasmas serving as co-reactants. The effects of the 
substrate temperature, plasma chemistry and plasma exposure time have 
been investigated in terms of growth-per-cycle (GPC), chemical, electrical 
and morphological properties of the deposited layer. It has been observed 
that highly resistive (0.75 Ωcm) Hf3N4 thin films are obtained via an A-B 
type ALD cycle (TDMACpH/N2 –fed plasma) with a GPC of 0.035 
nm/cycle. Furthermore, a limited abstraction of the ligands leads to a 
residual carbon content in the layer of 7%. 

Instead, conductive films (1.8 x 10-3 Ωcm) are achieved upon the 
application of an A-B-C ALD cycle where an intermediate H2- fed plasma 
exposure step is included between the TDMACpH exposure and the N2-fed 
plasma step, with a GPC of 0.045 nm/cycle. This intermediate step is found 
to be responsible for a more efficient removal of the precursor ligands and 
for the reduction of Hf4+ state to Hf3+ state, essential for guaranteeing 
electron conductivity. This transition of chemical and electrical properties 
of the deposited thin films is also accompanied by a change in 
crystallographic properties from amorphous (A-B ALD cycle) to conductive 
cubic HfN (A-B-C ALD cycle), as revealed by grazing incidence X-ray 
diffraction. 

Contact: s.karwal@tue.nl 
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