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8:00am  TF+EM+MI+MS-TuM1  FAST-ALDTM with Close Proximity 
(CP) Plasma for Low Temperature Applications: Nano-Composite 
Layer (NCL) Stacks for Flexible Substrates, SangIn Lee, Veeco 
 INVITED 
The stress of the film is an important factor in mechanical stability and 
reliability of the devices, especially flexible electronic applications and 
microelectro-mechanical systems ( MEMS ), because it causes mechanical 
cracks, delamination and degradation in reliability of the device. Moreover, 
mechanical integrity of nano-scaled devices requires not only the physical 
properties of the individual films such as thermal expansion coefficient and 
elastic modulus, but also integral structural properties such as interface 
adhesion, and therefore residual stress of the film need to be managed.  

Veeco’s proprietary ALD technology, Fast Array Scanning Technology 
(FAST-ALD™) with Close-Proximity (CP) Plasma, has unique 
characteristics that are differentiated from other spatial ALD technologies. 
CP-plasma in FAST-ALD™ provides very uniform radical streams onto the 
substrate without plasma-induced damages and substrate heating enabling 
FAST-ALD™ to provide plasma-ALD films and stable polymeric MLD 
films from CP Plasma which cannot be obtained from conventional plasma 
process, for high-quality films at extremely low temperature for use in 
stress-sensitive device applications such as low-k films on Si wafers or 
flexible functional films on plastic substrates.  

Stresses in inorganic ALD layers can be offset by either carbon-
incorporated dielectric (CID) interlayers or polymeric MLD interlayers. The 
relative percentage of the inorganic ALD film to CID interlayer can be 
changed to tailor the stress of the stacked film to the device requirements. In 
this experiment, the combinations of an inorganic dielectric layer (Al2O3) 
with CID interlayers as part of nano-laminates, obviously in the same 
philosophy with polymeric MLD interlayers, nano-composite layer (NCL) 
stacks were deposited at 80°C to control the stress of the stacks from tensile 
to compressive state and vice versa, by changing the thickness and atomic 
content of Al2O3 layer and materials. By changing the ratio of the thickness 
in NCL stacks, 4:2 stacked film (4 Al2O3 layers and 2 CID layers as a sub-
stack) and 1:1 stacked film (1 Al2O3 layer and 1 CID layer as a sub-stack) 
with total 30nm thickness show very low tensile stress and compressive 
stress of +58MPa and -89MPa, respectively, indicating the potential 
application of these free standing film stacks to nano-scaled devices and/or 
environmentally sensitive devices. NCL stack shows higher immunity to 
cracks and competitive barrier properties than that of the single ALD layer. 
NCL concept approaches can be applied to semiconductor in low-k pore 
sealing and oxidation barrier in the backend-of-line (BEOL) and cutting-
edge devices with flexible substrates.  

8:40am  TF+EM+MI+MS-TuM3  Atmospheric Roll-to-Roll Spatial 
Molecular Layer Deposition for flexible barriers, Fieke van den Bruele, 
F. Grob, P. Poodt, Holst Centre / TNO, Netherlands 
Proper encapsulation of devices such as OLEDs and thin-film photovoltaics 
is critical, as exposure to moisture from the ambient will degrade these 
devices, reducing their efficiency, lifetime, or even lead to failure 
altogether. Especially for OLEDs, the barrier requirements are very 
challenging, with a Water Vapor Transmission Rate < 10-6 g/m2/day. To 
achieve these very low WVRTs, very high quality barrier layers are 
required, being pinhole free over the entire device area. Encapsulation of 
flexible devices is even more challenging as the encapsulation should not 
affect the device flexibility too much.  

The recent development of roll-to-roll and large-area Spatial ALD 
technology has spurred the interest in ALD for encapsulation and barriers. 
Thin layers of inorganic material (10-20 nm) made with (spatial) ALD have 
sufficiently low intrinsic WVTR but often do not meet the requirements for 
barriers because they are very sensitive to particles and roughness that lead 
to defects. Thick inorganic films are less sensitive to particles, but suffer 
from stress and can have a limited flexibility. Various flexible thin film 
encapsulation techniques have been recently developed, often combining 
one or more thin inorganic diffusion barrier layers (e.g. SiNx, Al2O3) with 
an organic layer that acts as stress relief layer but has no additional barrier 
functionality. One of those proposed interlayers for stress relief and 
flexibility are organic materials deposited through Molecular Layer 

Deposition (MLD). A well-studied example are the Alucones, prepared by 
reacting trimethyl aluminum with an alcohol. There are several reports on 
the barrier properties of Al2O3 – Alucone multilayer stacks, but the results 
seem to be inconclusive. 

Assessing the flexibility these MLD layers are is not straightforward as 
measuring the mechanical properties of these very thin layers is difficult. 
We use a simple, qualitative method to test the flexibility of these MLD 
layers, by combining bending test with a polymer etch test to visualize 
cracks and other defects in the MLD film caused by bending. Preliminary 
results show that the flexibility of MLD layers, like their organic 
counterparts, largely depend on film thickness and can suffer from 
instability. 

The next step in making MLD barriers is upscaling towards large-area and 
roll-to-roll production. We will present the results of our atmospheric roll-
to-roll spatial MLD of alucones on polymer foils. Furthermore, an outlook 
to full-industrial scale R2R ALD/MLD production of barriers will be 
discussed. 

9:00am  TF+EM+MI+MS-TuM4  Low Temperature, Temporal and 
Spatial Atomic Layer Deposition of TiO2 using Titanium Tetra-
Isopropoxide as Precursor, Morteza Aghaee, Eindhoven University of 
Technology, Netherlands, P.S. Maydannik, Lappeenranta University of 
Technology, Finland, P. Johansson, Tampere University of Technology, 
Finland, M. Creatore, Eindhoven University of Technology, Netherlands, T. 
Homola, D.C. Cameron, Masaryk University, Czech Republic, J. 
Kuusipalo, Tampere University of Technology, Finland 
Spatial atomic layer deposition (S-ALD) is a technique which has been 
shown to lead to high quality moisture barrier films (e.g. Al2O3) in a roll-to-
roll process1. However, TiO2 is expected to outperform Al2O3 because of its 
higher stability against long-term degradation than Al2O3. For high 
throughput S-ALD at low temperature, highly reactive precursors with high 
vapour pressure are necessary. Titanium chloride is typically used but has 
the disadvantages of residual chlorine incorporation in the film and 
generation of corrosive by-products. Titanium tetra-isopropoxide (TTIP) is 
a valid alternative because of its high vapour pressure at room temperature 
compared to other titanium organometallic compounds2. TTIP has not 
previously been used as a precursor for S-ALD.  

In this work, a preliminary investigation has been carried out on the 
temporal ALD approach consisting of alternating exposure of a 
polyethylene naphthalate (PEN) substrate to the precursors TTIP and water, 
ozone or oxygen-fed plasma. The deposition was carried out at a substrate 
temperature of 80-120oC. The highest growth rate (0.056 nm/cycle) and 
refractive index (2.33) values have been obtained by using an O2- fed 
plasma. The water vapour transmission rates have been found to be lower 
than 5 × 10-4 g.m-2.day-1 at 38°C, 90% RH conditions for a film thickness of 
20 nm. For the water process, WVTR values were found to be in the range 
of 10-3 for a 40 nm film. 

Based on these results, a low pressure S-ALD process was developed using 
a Beneq TFS200R system. Titanium dioxide films were successfully 
deposited by TTIP and water as S-ALD precursors in the same temperature 
range as temporal, and their properties were characterised in terms of 
growth per cycle, refractive index and chemical composition. The growth 
rate saturated at precursor exposure time of 230 ms at every deposition 
temperature, which was slightly higher than the growth rate in temporal 
ALD mode at the same temperature range. Similar properties (refractive 
index and chemical composition) to temporal ALD have been obtained by 
adopting S-ALD.  

 
1 P. S. Maydannik, T. O. Kääriäinen, K. Lahtinen, D. C. Cameron, M. 
Soderlund, P. Soininen, P. Johansson, J. Kuusipalo, L. Moro, and X. Zeng, 
J. Vac. Sci. Technol. A 32, 051603 (2014). 
2 M. Aghaee, P. S. Maydannik, P. Johansson, J. Kuusipalo, T. Homola, M. 
Creatore, D. C. Cameron, Submitted to J. Vac. Sci. Technol. (2015) 

9:20am  TF+EM+MI+MS-TuM5  Spatial Atomic Layer Deposition into 
Flexible Porous Substrates, Kashish Sharma, University of Colorado at 
Boulder, D. Routkevitic, N. Varaksa, In Redox, S.M. George, University of 
Colorado at Boulder 
Spatial atomic layer deposition (S-ALD) is important for ALD 
commercialization. S-ALD has been successfully demonstrated on flat 
substrates. In this work, S-ALD was examined on flexible porous substrates 
using anodic aluminum oxide (AAO) membranes and Li ion battery 
electrodes. The AAO membranes were coated with ZnO ALD using 
diethylzinc and ozone as the reactants. The Li ion battery electrodes were 
coated with Al O ALD using trimethylaluminum and ozone as the reactants. 
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These experiments utilized a rotating cylinder reactor for S-ALD that is 
scalable to roll-to-roll operation [K. Sharma et al., , 01A132 (2015)]. 

ZnO S-ALD into the pores of AAO membranes depends on gas transport 
that is determined by the pore diameter, pore aspect ratio and reactant pulse 
duration. The reactant pulse duration is defined by the substrate speed in S-
ALD. Different reaction conditions and AAO membrane characteristics 
were explored using energy dispersive spectroscopy (EDS) to measure the 
Zn coverage profiles. Substrate speeds were defined by rotating cylinder 
rates of 10, 100 and 200 revolutions per minute (RPM). The AAO pore 
diameters were 50, 100 and 150 nm.  

For AAO pore lengths of 10 microns, the EDS analysis revealed that 
uniform Zn coverage profiles were obtained at 10 RPM. The Zn coverage 
profiles were less uniform at higher RPM values and smaller pore 
diameters. These results indicate that S-ALD into porous substrates is 
feasible. However, the uniformity of the ALD coverage will depend on 
reaction parameters and the characteristics of the porous substrate. In 
addition, LiNi1/3Mn1/3Co1/3O2 Li ion battery electrodes on flexible metal foil 
were coated with Al2O3 ALD using the S-ALD reactor at 10-100 RPM. 
Initial coin-cell testing has demonstrated that enhanced capacity stability of 
these cathode electrodes is obtained after 2-5 Al2O3 ALD cycles. 

9:40am  TF+EM+MI+MS-TuM6  Accurate Precursor and Reactant 
Delivery for Quantitative Atomic Layer Deposition, Masafumi Kitano, 
Stanford University, M. Nagase, N. Ikeda, Fujikin Incorporated, Japan, P.C. 
McIntyre, Stanford University 
Atomic layer deposition (ALD) has been widely discussed in the literature 
from various points of view. Typically, the amount of the precursor and 
reactant supplied into the ALD chamber is dictated only by controlling 
valve operation time, and is not quantitatively defined. To achieve a more 
quantitative ALD process, we have developed new flow rate control system 
(FCS) which can accurately dose precursor and reactant into an ALD 
reactor. This FCS consists of an orifice plate, pressure sensor, thermal 
sensor, and piezo control valve. It can be heated to 250˚C to achieve 
sufficient vapor pressure for most precursors used in ALD of various 
inorganic compounds and elements. The FCS controls the flow rate under 
critical expansion conditions (or choked flow conditions); the flow rate 
through the orifice is proportional only to the upstream pressure of the 
orifice.[1,2] The piezo control valve accurately controls the upstream 
pressure and, thus, the flow rate. This mode of operation makes it possible 
to control the dosing of precursor and reactant by simply operating an 
endpoint valve placed close to the ALD reactor, because the upstream 
pressure is controllable whether the gas flow is running or not.  

We have demonstrated an ALD process with trimethylaluminum (TMA) 
and water vapor (H2O) reaction for Al2O3 deposition using the FCS to 
accurately control dosing into the ALD reactor. Excellent uniformity and 
reproducibility of deposition, and high quality dielectric properties of the 
resulting Al2O3 films have been achieved. The critical doses of TMA and 
H2O into the chamber have been found to achieve surface saturating ALD 
of Al2O3 on a silicon substrate. 

[1] A. Guthrie, R. K. Wakerling, “Vacuum Equipment and Techniques” 
McGraw-Hill book company, Inc., pp17, (1949) 

[2] R. H. Perry, D. Green, “Perry's Chemical Engineers' Handbook, Sixth 
Edition” McGraw-Hill Co., pp5-14, (1984) 

11:00am  TF+EM+MI+MS-TuM10  ALD for Capacitor Technologies, 
Ramakrishnan Rajagopalan, C. Randall, The Pennsylvania State 
University INVITED 
Atomic layer deposition (ALD) is a powerful processing technique that can 
be used to modify interfacial processes occuring in electrochemical 
capacitors. Charge storage mechanism in electrochemical capacitors is 
either due to electrostatic double layer formation or pseudocapacitive 
faradaic interactions at electrode/electrolyte interfaces. The talk will present 
an overview of our efforts in developing pseudocapacitive vanadium oxide 
thin films using ALD approach on high surface area carbon electrodes. The 
deposition process is dependent upon the carbon properties such as surface 
functionalization and porosity. We will report our investigation of 
deposition of ALD films on nanostructured carbon electrodes with 
controlled porosity in mesopores (<20 nm) to ultramicropore (0.8 nm to 2 
nm) ranges. ALD also facilitates the possibility of combining 
electrochemical effects with dielectric effects. ALD of dielectrics such as 
Al2O3 on electrodes used in aqueous, organic and lithium based electrolytes 
can mitigate the issues relating to electrochemical stability due to solvent 
decomposition reactions and leakage performance with limited effect on the 
ESR performance of the capacitor. There is also possibility of designing 
novel solid state capacitor structures that synergistically integrates the 
electrical double layer interactions due to ions with dielectric energy 
storage. 

11:40am  TF+EM+MI+MS-TuM12  Compositionally and Functionally 
Graded Hybrid Layer for High-Performance Adhesion, Yichuan Ding, 
R.H. Dauskardt, Stanford University 
Reliable bonding of organic/inorganic interfaces continues to be one of the 
most important challenges in multilayer devices including microelectronic, 
photovoltaic and display technologies. Hybrid molecular materials which 
contains both organic and inorganic components has been shown to be well 
suited for bonding organic/inorganic (metals, metal-oxides, nitrides, …) 
interface, mitigating moisture degradation and even stress migration. The 
hybrid films (less than 100nm) made of two primary precursors, an 
epoxysilane and a zirconium alkoxide, have been deposited via solution 
based synthesis, with low cost and high throughput. By optimizing sol-gel 
chemistry and processing conditions, we achieved an impressive tenfold 
improvement in interfacial adhesion at the epoxy/Si substrate interface, and 
have proven the suppression of moisture degradation at the interface. 

In this work, we emphasized on our newly developed spray deposition 
technique with more versatility and better suited to large-scale 
manufacturing. We utilized both bilayer coating and dual-sources spray 
strategies to create highly compositionally and functionally graded hybrid 
film compared with films achieved via traditional dip-coating. XPS depth 
profiling shows highly graded hybrid films with independent compositional 
control within 80nm can be achieved via spray coating in the dry regime. 
We took advantage of the compositional control brought by spray coating to 
unravel the structure-property relationships in the multi-functional hybrid 
films by varying components/parameters to fine tune the molecular 
structure of the resulting film and relate that to its properties obtained from 
our advanced thin-film mechanical testing techniques together with other 
chemical characterization techniques (XPS, FTIR, NMR and GCMS). The 
evolution of the hybrid molecular network during film process and how 
molecular level details of the hybrid film has a large effect on its 
mechanical properties were better understood.  
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