2:20pm **TF+AS+EM+EN+MN-WeA1** The Many Avatars of PVD, Murali Narasimhan, Applied Materials, Inc.

Physical Vapor Deposition has been used for many years for depositing thin film coatings for diverse uses ranging from jewelry to industrial cutting tools. PVD has found usage in the manufacture of advanced semiconductor manufacturing for depositing various metals and some specialty dielectrics as well. The majority of high purity metal deposition for semiconductor use has been done using PVD although the use of CVD and ALD has increased over the years because of requirements of conformality and gap fill where conventional planar PVD has not been adequate. However, breakthroughs in PVD technology have been successful in extending the use of PVD to advanced semiconductor manufacturing nodes by changing the geometry of PVD sources and reactors and the nature of the plasma involved. Collimated and long-throw sources developed by the semiconductor equipment industry in the early '90s enabled the deposition of high-purity Ti to lower contact resistance for transistors. Reactive sputtering of TiN enabled a robust barrier for CVD W plugs used at the 0.5um node. Further, use of electromagnetic fields to ionize and then guide the plasma and sputtered ionized atoms has been successful in improving the conformality of PVD Ti films. Ionized Metal Plasma (IMP), Hollow-Cathode Magnetron (HCM) and Self-Ionized Plasma (SIP) were innovations in ionized PVD reactor design that led to widespread adoption of PVD TaN and PVD Cu for Cu interconnect barrier and seed layer production from the 90nm node to the present. The application of thermal energy to the substrate and the substrate materials of Al and Cu has been useful in improving the flow of deposited material and subsequent gap-fill of sub-micron features. The use of Radio Frequency (RF) energy to power the target has allowed for more efficient ionization at lower power levels. The application of a capacitive tuner to modulate the ion bombardment on the wafer and tailor the film properties of TiN for hard mask applications has enabled the realization of etched features at the 22nm node. Pulsed DC magnetrons enable sputtering of dielectric materials, thus opening up the controlled deposition of thin films of insulating films for various applications such as improving the brightness of high-efficiency LEDs. Multi-cathode off-axis PVD magnetrons have enabled the deposition of multi-layers of ultra-thin films for magnetic devices such as advanced in-plane and out-of-plane MRAM and the manufacture of EUV mask blanks for sub-10nm manufacturing. This talk will present the above listed progression of PVD technology over the years and its use for many applications in semiconductor manufacturing.

3:00pm **TF+AS+EM+EN+MN-WeA3** Reactive Foil Ignition by Laser Irradiation: Experimental and Modeling Results, Ryan Murphy, C.D. Yarrington, Sandia National Laboratories, R.F. Reeves, Lawrence Livermore National Laboratory, D.P. Adams, Sandia National Laboratories

It has been shown that forced mixing of reactive layers (foils) leads to an exothermic release of energy after ignition by pulsed laser irradiation. In order to understand the ignition of foils initiated by laser irradiation, we study the interaction of laser pulses with Al/Pt multilayer reactive foils prepared by sputter deposition. It will be shown that the single-pulse ignition threshold and dynamics are dependent on the length of the laser pulse as the pulse length is varied from 150 fs to 100 ms. The dependence of the ignition threshold on pulse length is a combination of laser-material interactions such as the size of the heat affected zone and the onset of ablation for ultrafast irradiation. Simulations of single-pulse laser heating were performed with Aria, the thermal package of the SIERRA finite element computational framework. Three-dimensional geometries were subjected to laser flux boundary conditions equal to those measured from the experimental conditions. Modeling and experimental results are correlated to show the effects of the heat affected zone size and shape on ignition thresholds and onset times.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

3:20pm **TF+AS+EM+EN+MN-WeA4** Reactive Multilayers Grown by Sputter-Deposited Bimetallic Multilayers, David Adams, R.F. Reeves, M. Hobbs, Sandia National Laboratories

Reactive multilayers grown by sputter deposition have recently attracted interest for applications including material joining (soldering, brazing) and energy sources. For these applications, a metal-metal multilayer is typically designed to have many discrete reactant layers and a composition that corresponds to the peak enthalpy for a given material system. A thickness of reactive multilayers as small as 1.6 microns has recently been demonstrated for microelectronics joining (Brenner et al. ECS Transactions, 2012). However, little is known about the minimal multilayer thickness required for ensuring a self-sustained, high temperature synthesis (SHS) reaction. With this presentation, we describe the behavior of thin reactive Al/Pt multilayers tested as freestanding foils and as adhered films. For multilayers having a total thickness of 1.6 microns, self-sustained, high temperature reactions readily occur when the multilayer is tested as a freestanding foil. When coupled to a semi-infinite substrate, the likelihood of reaction is reduced depending on the multilayer design.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

5:00pm **TF+AS+EM+EN+MN-WeA9** Beyond Deep Silicon Etching – Generating High Aspect Ratio Microstructures by Infiltration of Carbon Nanotube Frameworks, Robert Davis, Brigham Young University

In addition to being the anchor material for microelectronics, silicon is widely used as the basis of high aspect ratio microfabrication for MEMS with applications ranging from inertial sensors to neural probe arrays. Carbon nanotube templated microfabrication (CNT-M), extends the palette of materials and structures for high aspect ratio microfabrication beyond those achievable with vertically etched bulk silicon. In CNT-M, 3-D forests of patterned vertically-aligned carbon nanotubes are grown as a high aspect ratio microstructure, then “forests” are infiltrated with a secondary material by chemical vapor deposition. Precision structures (including nanoporous structures) with very high aspect ratios (greater than 400:1) can be generated with CNT-M. The infiltration materials range from ceramics to metals and include silicon dioxide, silicon nitride, carbon, nickel, and yes silicon. We are using CNT-M to fabricate functional structures for applications including mechanical actuation, chemical separations and detection, and electrochemical energy storage.

5:40pm **TF+AS+EM+EN+MN-WeA11** The Influence of Thin Binder Films on Reaction Behavior in Reactive Powder Complexes, Robert Reeves, K.T. Sullivan, A.E. Gash, Lawrence Livermore National Laboratory

With the recently renewed interest in additive manufacturing (AM), there has been a recent upswell in the number of AM processes available. One such process that could be useful for reactive materials utilizes a curable binder to adhere loose powders into coherent deposits. In this process, tap-density powders are nearly saturated with binder, so the resulting film of binder present on each particle can represent a significant contaminant to the reaction system. In this work, the effect of the binder on reaction behavior in the Ni-Al system is explored. First, the distribution of binder and its elemental constituents are studied by electron microscopy and energy dispersive spectroscopy for powders with varying levels of binder saturation. Then, the effect of binder on the reaction kinetics and overall behavior is investigated. The change in overall heat release and apparent activation energy are quantified through differential scanning calorimetry, and the bulk reaction propagation rate is measured by high speed photography as a function of the weight fraction of binder in the compact. Finally, the reaction products are identified through x-ray diffraction. In all tests, comparisons are made to the neat Ni-Al system.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
subsequent infiltration step to coat the rolled CNTs with amorphous carbon or polymer has also been performed to improve adhesion of neighboring CNTs. Amorphous carbon infiltration was achieved using chemical vapor deposition and polymer infiltration was performed by dipping the sheet into a solvent-mediated, polymer solution. The typical failure mode of the CNT thin-films is to tear parallel to the alignment of the CNTs. Infiltration of the aligned CNT film with additional materials strengthens the film against tearing and increases burst pressure. Non-infiltrated CNT thin-films have sustained a differential pressure of 1.4 atm over a circular area of 7 mm² on a bulge test apparatus. Both carbon and polymer infiltrated sheets could be used in many applications including micromechanical sensing and actuation.
Authors Index

Bold page numbers indicate the presenter

— A —
Adams, D.P.: TF+AS+EM+EN+MN-WeA3, 1; TF+AS+EM+EN+MN-WeA4, 1

— B —
Boyer, N.: TF+AS+EM+EN+MN-WeA12, 1

— C —
Cornaby, S.: TF+AS+EM+EN+MN-WeA12, 1
Creighton, R.: TF+AS+EM+EN+MN-WeA12, 1

— D —
Davis, R.C.: TF+AS+EM+EN+MN-WeA12, 1; TF+AS+EM+EN+MN-WeA9, 1

— G —
Gash, A.E.: TF+AS+EM+EN+MN-WeA11, 1

— H —
Harker, M.: TF+AS+EM+EN+MN-WeA12, 1
Hobbs, M.: TF+AS+EM+EN+MN-WeA4, 1

— I —
Iverson, B.D.: TF+AS+EM+EN+MN-WeA12, 1

— M —
Murphy, R.D.: TF+AS+EM+EN+MN-WeA3, 1

— N —
Narasimhan, M.: TF+AS+EM+EN+MN-WeA1, 1

— P —
Pei, L.: TF+AS+EM+EN+MN-WeA12, 1

— R —
Reeves, R.V.: TF+AS+EM+EN+MN-WeA11, 1; TF+AS+EM+EN+MN-WeA3, 1; TF+AS+EM+EN+MN-WeA4, 1
Rowley, J.T.: TF+AS+EM+EN+MN-WeA12, 1

— S —
Sullivan, K.T.: TF+AS+EM+EN+MN-WeA11, 1
Syme, D.B.: TF+AS+EM+EN+MN-WeA12, 1

— V —
Vanfleet, R.: TF+AS+EM+EN+MN-WeA12, 1

— Y —
Yarrington, C.D.: TF+AS+EM+EN+MN-WeA3, 1