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2:20pm  SD+AS+EM+PS-ThA1  Surface Chemistry Related to Selective 
Deposition, Suvi Haukka, ASM Microchemistry Ltd., Finland, J.W. Maes, 
ASM Belgium INVITED 
The shrinking device dimensions in semiconductor manufacturing call for 
new innovative processing approaches. One of these considered is selective 
deposition which has gained increasing interest among semiconductor 
manufacturers today. Selective deposition would be highly beneficial in 
various ways, for instance, it would allow a decrease in lithography and 
etch steps reducing the cost of processing and enable enhanced scaling in 
narrow structures making bottom up fill possible. Chemical vapor 
deposition (CVD) and especially atomic layer deposition (ALD) as very 
surface sensitive techniques are considered enabling techniques.  

Selective deposition typically deals with a selective deposition method 
where, for instance, a metal layer is selectively deposited on metal surface 
over dielectric surface, or a dielectric layer is selectively deposited on 
hydrophilic polymer over a more hydrophobic polymer. In most of the 
selective deposition schemes of today the passivation is used for the surface 
on which no deposition is desired. The most known method is to use SAM´s 
(self-assembled monolayers) which are silicon compounds with long carbon 
chains. Besides the SAM passivation of surfaces also the clever selection of 
precursors with built-in selectivity in certain process conditions could be 
applied. 

In this paper, the chemistry challenges in the various selective deposition 
approaches and passivation means are reviewed. In addition, results from 
the selective deposition of metal on metal over dielectric surface in a Cu 
capping application and from selective strengthening of DSA (direct self-
assembly) layers are presented.  

3:00pm  SD+AS+EM+PS-ThA3  Selective Deposition - The New 
Patterning Paradigm?, Florian Gstrein, Intel Corporation INVITED 
Top-down patterning techniques based on optical lithography have made 
consumer electronics ever more powerful, ubiquitous and affordable. This is 
largely due to the ability of lithographic techniques to transfer trillions of 
mask features to wafers at defect densities approaching virtually zero in 
high-volume manufacturing. While the resolution of optical lithography 
tools is typically considered to be the main challenge for continued device 
scaling, it is actually accurate pattern placement, which has emerged as the 
biggest concern. Novel bottom-up patterning approaches such as selective 
deposition are needed to overcome shortcomings in pattern placement 
accuracy. 

The talk will first outline the challenges patterning processes based on 193i 
pitch division and EUV lithography face in terms of alignment accuracy and 
how complementary patterning techniques such as selective deposition can 
reduce pattern placement errors. One of the great challenges of selective 
deposition is defect mitigation, especially as the sensitivity to killer defects 
increases as device dimensions scale. Defect mitigation requires a 
fundamental understanding of the chemical selectivity of surfaces. While 
molecules can recognize chemical functionality on a surface, selective 
deposition processes based on atomic layer deposition (ALD) or chemical 
vapor deposition (CVD) are exceedingly rare and largely limited to specific 
precursors and substrates. For metal deposition, inherent selectivity was 
achieved through judicious precursor ligand design. Experimental results 
will be presented in the context of a theoretical investigations aimed at 
calculating the kinetic barriers that govern the selectivity of metal 
deposition. The use of self-assembled monolayers (SAMs) as passivants 
and/or blocking layers for subsequent deposition is an attractive way of 
overcoming the non-selectivity of many CVD or ALD processes. Here, the 
critical parameters for selective blocking are choice of the terminal group, 
surface termination, carbon chain length, and proper precursor choice. 
Using SAMs, selective deposition of dielectrics with respect to a variety of 
surfaces was achieved. The talk will conclude with our vision of how 
defects can be mitigated: It comprises a fundamental understanding of the 
chemical nature of the surface, precursors with high kinetic barriers for 
defect formation, passivation of defect nucleation sites, and the removal of 
defects post deposition. Selective deposition, if properly resourced and 

developed, can provide powerful means to future scaling and is one way of 
ensuring that patterning will continue to support Moore’s Law in the 
foreseeable future. 

4:00pm  SD+AS+EM+PS-ThA6  Area-Selective Molecular Layer 
Deposition: Enhanced Selectivity via Selective Etching, Richard Closser, 
D.S. Bergsman, F.H. Minaye Hashemi, S.F. Bent, Stanford University 
Recent developments in electronic devices are pushing toward smaller and 
smaller features of both metal and dielectric patterns, along with a desire to 
produce selectively deposited organic thin films on such patterns. 
Techniques that allow for a high degree of control over the thickness and 
conformality of organic thin films, such as molecular layer deposition 
(MLD), are ideal candidates to meet these selective deposition 
requirements. Using MLD, several types of thin film polymers can be 
deposited with angstrom-level control due to the sequential, self-limiting 
surface reactions resulting in monomer-by-monomer growth. Selectivity in 
the MLD polymer growth is then achieved by utilizing the chemical 
functionally between the solid substrate surface and the gas phase monomer 
precursors.  

Previously, we have shown the ability to selectively deposit thin film 
polymers by MLD onto pre-patterned metal and dielectric substrates by 
utilizing a blocking layer of octadecylphosphonic acid (ODPA) self-
assembled monolayers (SAMs) that deposits onto metals more readily than 
onto dielectric films. Although this process can prevent MLD for up to 6 
nm of deposition, selectivity of polymer growth is lost for thicker films, and 
therefore we are exploring new methods for increasing the MLD selectivity. 
For the current studies, ODPA SAM is deposited onto a patterned 
metal/dielectric (Cu on SiO2) substrate to act as the MLD blocking layer. 
Once the SAM is fully deposited, polyurea films are grown onto the 
substrate by MLD to a desired thickness which can be controlled by the 
number of monomer dose cycles used. An acid etchant is then used to 
remove the surface oxide of the metal along with the SAM layer while 
leaving intact the polymer film deposited onto the dielectric. X-ray 
photoelectron spectroscopy, Auger electron spectroscopy, and ellipsometry 
measurements show that this process removes undesired MLD film that was 
deposited on the metal. Studies on patterned substrates confirm selective 
polymer film growth onto the dielectric over the metal. The etchant removal 
technique thus increases the selectivity of MLD growth by more than an 
order of magnitude when compared to the SAM blocking layer alone. Due 
to the increased selectivity with the etching based process, selective 
deposition of MLD films as thick as 12 nm have been demonstrated. 
Atomic force microscopy results show slight surface roughening due to 
etching while the bulk of the metal/dielectric pattern remains intact. This 
increase in MLD selectivity should allow for novel applications of selective 
polymer film deposition.  

4:20pm  SD+AS+EM+PS-ThA7  Nucleation and Steady State ALD of 
Metallic Tin Using SnCl4 and a Silyl Pyrazine Reducing Agent, Eric 
Stevens, M.B. Mousa, G.N. Parsons, North Carolina State University 
Metal atomic layer deposition (ALD) processes are typically limited to 
noble, high work-function metals where uniform nucleation and conformal 
growth can be problematic. Recent work suggests that 1,4-
bis(trimethylsilyl)-1,4-dihydropyrazine (DHP) could be an effective 
reducing agent for deposition of metals with highly negative 
electrochemical potentials. This work investigates DHP as a potential 
reducing agent for tin metal ALD using tin (IV) chloride (SnCl4). 

Experiments were carried out in a custom-built, hot-wall reactor using N2 
carrier gas, an operating pressure of 1.3 Torr, and temperatures between 130 
and 170°C. The DHP source was heated to 70°C to maintain a vapor 
pressure ~1.2 Torr. Initial films were deposited at 130°C on silicon using a 
SnCl4/N2/DHP/N2 exposure sequence of 4/50/10/50 seconds, then analyzed 
ex-situ by X-ray photoelectron spectroscopy (XPS) with Ar depth profiling. 
In sputtering deeper into the film, XPS exhibited both Sn-Sn and Sn-O 
peaks at 485 and 486.7 eV, respectively, where a decrease in Sn-O and an 
increase in Sn-Sn peak intensities suggests native oxidation of the film upon 
exposure to air. Furthermore, 7% Cl and 19% N were found in the films 
after sputtering, presumably from an incomplete reaction and/or 
incorporation of reaction byproducts. 

To better understand surface reactions and growth mechanisms, we 
characterized the ALD process at 130, 150, and 170°C using in situ 
quadrupole mass spectrometry (QMS) and quartz crystal microbalance 
(QCM). QCM analysis at 130 and 150°C showed continued growth with 
extended exposures, consistent with non-ALD growth. Deposition at 170 °C 
was more repeatable and more closely approached surface saturation. At 
170°C, QCM showed a clear mass increase during the SnCl4 dose and a 
corresponding mass decrease during the DHP dose, consistent with DHP 
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removing Cl and reducing the Sn-Cl surface. Moreover, the QMS results 
showed peaks exclusively during DHP doses at m/z values of 80 (pyrazine) 
and 65, 93, 95 (trimethylsilyl chloride), which are the most probable 
byproducts of DHP reacting with a chlorinated surface. 

Using gold-coated QCM crystals at 170°C, Sn growth proceeds slowly for 
the first ~150 ALD cycles, whereas growth on QCM crystals previously 
coated with Sn show a more rapid transition to steady-state growth (<20 
cycles). We are currently investigating the nucleation on different substrates 
and how process conditions can be tuned to achieve selective deposition. 
Understanding the surface reaction and growth mechanisms of tin metal 
deposition using DHP could provide a foundation for deposition of metal 
thin-films that were previously unattainable. 

4:40pm  SD+AS+EM+PS-ThA8  Determination of the Minimum 
Saturating Dose during Atomic Layer Deposition of Alumina and 
Titania on Si(100) and Si(100)-H, D. Dick, University of Texas at Dallas, 
Joshua Ballard, J. Randall, Zyvex Labs, Y.J. Chabal, University of Texas 
at Dallas 
Atomic layer deposition (ALD) has become an important process step in 
semiconductor manufacturing, where the self-limiting nature of each step of 
the process permits atomic scale control over the ultimate layer thickness in 
addition to relatively fast processing with high pressure reactors. However, 
it has been shown that ALD can be used to selectively deposit material onto 
patterned surfaces, requiring not only saturation of each deposition cycle in 
desired areas but also suppression of deposition in those areas where it is 
undesirable. One mechanism for improving practical selectivity would be to 
find the minimum exposure that is saturates the growth where desired in 
order to avoid excess overall reaction probability in areas where inhibited 
growth is preferred. 

To investigate this, we have examined the deposition in vacuum (“UHV 
ALD”) of Al2O3 and TiO2 with TMA and TiCl4, respectively, on both 
hydrophobic, H-terminated Si(100) surfaces and hydrophilic OH-terminated 
Si(100) surfaces prepared by H2O exposure of clean Si(100)-(2x1) surfaces. 
Surface reactions and relative coverages are determined by in-situ IR 
spectroscopy, and ex-situ XPS. We find that good selectivity can be 
achieved at 150oC. Preliminary data and calculations also suggest that an 
initial wetting layer of TMA on clean Si(100) promotes subsequent growth 
of TiO2 or other high-k dielectrics. Finally, we will discuss how these 
findings have made it possible to develop a full multi-cycle process for a 
custom low-pressure ALD system equipped with scanning tunneling 
microscopy and atomic force microscopy. 

5:00pm  SD+AS+EM+PS-ThA9  Selective Growth of GeSbTe Phase-
Changing Materials Utilizing Self-Aligned Confined Structure, 
ByungJoon Choi, Seoul National University of Science and Technology, 
Republic of Korea, T. Eom, C.S. Hwang, Seoul National University, 
Republic of Korea 
GST Phase changing material, typically GeTe–Sb2Te3 pseudo-binary solid 
solution, has been extensively studied for rewritable digital versatile optical 
disks or phase change random access memory (PcRAM), on account of the 
drastic change of its optical reflectivity or electrical resistivity between 
amorphous and crystalline phases. As the device size of PcRAM is scaled 
down, GST materials should be confined into the contact-plug for reducing 
its programming current, which cannot be achieved by any physical 
deposition method. 

Among the various metal-organic (MO) precursors, the combination of 
Ge(iBu)4, Sb(iPr)3 and Te(iPr)2 has been extensively studied for plasma 
enhanced chemical vapor depostion or its variant methods with plasma-
activated H2 gas as a reducing agent of the MO-precursors. Plasma-
enhanced pulsed CVD was attempted using the precursor pulse sequence 
consisting of Sb–Te–Ge–Te cycles (each elemental cycle is composed of 
precursor injection and Ar + H2 plasma reduction steps). The chemical 
composition of the films was appropriately controlled by the cycle ratio and 
sequence of each precursor pulse. The linear growth with the number of 
cycles was shown, and the GPC (growth-per-cycle, i. e. growth rate) was 
determined to be 0.73 nm/super-cycle from the slope at a wafer temperature 
of 200◦C. 

Strong substrate dependency can be utilized in the selective growth of GST 
material on a TiN contact-plug formed in the SiO2 inter-layer dielectric 
(ILD). Higher selectivity (difference of GPC) between TiN contact-plug and 
SiO2 ILD layer was achieved by pulsed CVD with increasing the amount of 
Te(iPr)2 injection. The reason for the selective growth was believed to have 
originated from the adverse interference of the residual gas (unreacted 
Te(iPr)2 or its derivatives) to the chemical adsorption of Sb nuclei on the 
SiO2 surface, which functions as a nucleation site for further GST growth. It 
was reported that amide-based Ge precursors also showed strong selectivity 
at a particular temperature, enabling Sb and Te precursors to be 
chemisorbed on the Ge seed layer, which could be utilized for selective 
growth of GST.  

The most feasible explanation for the substrate-dependent growth behavior 
of the GST film is the electron donation from the substrate, which would 
enhance the precursor decomposition and removal of ligands from the 
adsorbed precursor molecules. The nucleation and growth behaviors of the 
GST films were studied on Si substrates with various nucleation or buffer 
layers. It turned out that the types of substrates have a crucial impact on the 
nucleation behaviors and the chemical composition of the film. 

5:20pm  SD+AS+EM+PS-ThA10  Toward an All- Vapor Process for 
Area Selective Atomic Layer Deposition, FatemehSadat Hashemi, S.F. 
Bent, Stanford University 
Modern electronic devices containing planar and 3-D structures utilize a 
number of metal/dielectric patterns in both the front and back end. The 
scaling of next generation electronic devices makes achieving these patterns 
increasingly difficult and motivates the development of novel processing 
methods. One such method−area selective deposition−has the opportunity to 
play an important role in significantly reducing process complexities 
associated with current top-down fabrication of patterned structures by 
eliminating some of the deposition and etching steps that are time-
consuming and expensive. 

Atomic layer deposition (ALD) is a good choice for area selective 
deposition because its chemical specificity provides a means to achieve 
selectivity on a spatially patterned substrate. Area selective ALD, reported 
previously by several groups, requires improvements for the process to be 
compatible with current device fabrication goals. Most previous studies of 
area selective ALD have achieved deposited thicknesses on the order of 
only a few nanometers and the selectivity was generally obtained by 
passivation of the surface using self-assembled monolayers (SAMs) in the 
regions where ALD was not desired. Existing methods are usually 
performed by dipping the substrates into a solution containing the SAM-
forming molecules for several hours. A more desirable all-vapor process 
would require vapor delivery of the SAMs. This method would provide 
better SAM coverage on porous or three-dimensional structures, potentially 
decreasing the required deposition time for the passivation layer, and 
allowing the SAM passivation step to be integrated with the rest of the ALD 
process. 

In this work, we investigate area selective dielectric-on-dielectric deposition 
by selectively depositing organic alkanethiol SAM as the blocking layer on 
metal parts of a metal/dielectric (Cu/SiO2) pattern. We compare area-
selective ALD achieved by introduction of the thiolate SAM in both the 
solution and vapor phase. We show that while in both cases the SAM can 
prevent subsequent deposition of metal oxide dielectric films via ALD, 
vapor deposition provides stronger passivation in a shorter exposure process 
on the metal. We also report results on regenerating the thiol SAM 
protecting layer from the vapor phase between ALD cycles and show that 
this approach is effective in improving the blocking properties of the SAM 
on Cu. This strategy provides the ability to significantly improve selective 
deposition of dielectrics. Moreover, it is a significant step toward an all-
vapor process for area selective deposition, opening up the possibility for 
new applications in next generation electronic devices. 

5:40pm  SD+AS+EM+PS-ThA11  Selective Deposition of ALD Metal 
oxides and Metal Thin Films by Fab-Friendly Surface Treatments, 
Kandabara Tapily, K.-H. Yu, S. Consiglio, R. Clark, D. O'Meara, C. 
Wajda, G. Leusink, TEL Technology Center, America, LLC 
For the last 5 decades, the semiconductor industry has relied on the 
continued scaling down of the device feature size in order to improve 
performance and increase bit density according to Moore’s law. However, 
with the delay in implementation of extreme ultraviolet lithography (EUV) 
in high volume manufacturing,1 patterning beyond the 14 nm technology 
node is getting extremely difficult to manage due to the overlay control and 
the increase in manufacturing cost due to multi-layer alignments. In order to 
keep reducing the device feature size, new patterning solutions are needed 
such as selective deposition and selective etching of materials. Atomic layer 
deposition (ALD) has emerged as one of the leading film deposition 
techniques as a result of the semiconductor device scaling.2 ALD provides 
excellent film control, uniformity and high conformality. ALD is highly 
surface reaction driven and it is possible to modify the substrate surface to 
activate or deactivate growth on selected area hence selective-area ALD 
(SA-ALD). Selective-area ALD can simplify and reduce the high 
manufacturing cost associated with highly aggressive patterning schemes by 
eliminating certain lithography steps. Thin films can now be selectively 
deposited or removed from a desired area. Most selective-area ALD studies 
in the literature are conducted with the use of self-assembled monolayers 
(SAMs) in order to deactivate or activate growth on certain areas.3-5 SAMs 
are thin organic films that form spontaneously in tightly packed oriented 
molecules on solid surfaces. A key enabler of SAMs is the ability to turn 
these organic layers into patterned layers. However, thermal stability and 
the slow formation process into well packed layer are some of the major 
drawbacks of SAMs.5 
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In this study, a non SAMs based approach was used to inhibit ALD growth 
of metals and metal oxides. Using different surface treatments, it was 
observed the growth of the ALD thin films can be modulated, see Fig.1 and 
Fig.2 respectively. ALD Al2O3 growth was suppressed by a combination of 
the vapor HF and cyclical low temperature plasma hydrogen treatment and 
deposition. Additionally, ALD TaN growth was also inhibited by the use of 
a combination trimethylsilane (TMS) and dimethylamine (DMA) treatment 
of the surface prior to ALD deposition. 
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