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8:00am  2D+EM+MG+NS+SE+SM+SS+TF-ThM1  CVD Growth and 
Characterization of 2D MoS2, MoSe2, MoTe2, WS2, WSe2, and MoS2(1-

x)Se2x Alloys, David Barroso, T. Empante, A. Nguyen, V. Klee, I. Lu, E. 
Preciado, C. Lee, C. Huang, W. Coley, S. Naghibi, G. von Son, A. Brooks, 
J. Kim, L. Bartels, University of California, Riverside 
Transition Metal Dichalcogenides (TMDs) have been of increasing interest 
over the past years due to their exciting semiconducting properties. In the 
bulk, TMDs possess a native indirect bandgap and transition to a direct 
bandgap as they approach the monolayer limit. The bandgaps range from 
1.15 eV to 1.95 eV depending on composition. Using organic liquids and/or 
inorganic powders as precursors, CVD growth techniques have been 
realized for MX2 TMDs (M = Mo, W; X = S, Se, Te) and their alloys at 
tunable compositions. We achieved consistent synthesis of these TMDs 
materials. The films can either be made homogeneous in bandgap or 
exhibiting a linear bandgap gradient. Characterization of the films include 
Raman and photoluminescence spectroscopy, as well as AFM. Device 
fabrication allows for transport measurements. Depending on the 
composition, the materials show n- or p-doping in a consistent fashion.  

8:20am  2D+EM+MG+NS+SE+SM+SS+TF-ThM2  Investigation of 
Manganese Dioxide Nanosheets by STM and AFM, Loranne Vernisse, 
S. Afsari, S.L. Shumlas, A.C. Thenuwara, D.R. Strongin, E. Borguet, 
Temple University 
Interest in ultrathin two-dimensional nanosheets has grown exponentially 
thanks to their unique and diverse electronic properties. As they possess 
atomic or molecular thickness and infinite planar dimension, they are 
expected to have different properties than the bulk of the material from 
which they originate. This offers opportunities for the development of 
devices in various areas, ranging from catalysis to electronics. Using the 
exfoliation approach, it is possible to investigate 2D nanosheets of different 
materials in search of new phenomena and applications. Bearing this mind, 
we focused on manganese dioxide (MnO2), and more specifically δ-MnO2 
(Birnessite). This mineral has the advantage to present a low surface 
enthalpy[1], which results in weak water binding. Moreover, the presence of 
defects, e.g., oxygen vacancies has a dopant effect on water oxidation. 
These properties make MnO2 a perfect candidate as a catalytic surface for 
water splitting and pave the way to the design of clean and renewable 
energy system. Furthermore, MnO2 can be easily exfoliated into ultrathin 
nanosheets owing to the layered structure of the manganese oxide 
precursors. 

Our goal is to investigate the catalytic activity of ultrathin MnO2 nanosheets 
using scanning probe microscopy techniques, especially atomic force 
microscopy (tapping mode) and scanning tunneling microscopy (ambient 
and electrochemical conditions). In this perspective, we have first improved 
the deposition processes and find the imaging conditions to observe MnO2 
nanosheets with an average thickness of one or two layers. We have also 
showed that MnO2 single layer nanosheets exhibit an expected hexagonal 
atomic pattern and present some defects. We will now resolve and identify 
the different defects and investigate the evolution of the conductivity as a 
function of the defect concentration and the number of layers. 

This work was supported as part of the Center for the Computational 
Design of Functional Layered Materials, an Energy Frontier Research 
Center funded by the U.S. Department of Energy, Office of Science, Basic 
Energy Sciences under Award #DE-SC0012575. 

[1] M. M. Najafpour, E. Amini, M. Khatamian, R. Carpentier, S. I. 
Allakhverdiev, Journal of Photochemistry and Photobiology B: Biology 
(2014), 133, 124. 

8:40am  2D+EM+MG+NS+SE+SM+SS+TF-ThM3  Two-Dimensional 
Early Transition Metal Carbides and Carbonitrides "MXenes": 
Synthesis, Properties and Applications, Michael Naguib, Oak Ridge 
National Laboratory INVITED 
Ternary layered carbides and nitrides with formula of Mn+1AXn (M stands 
for early transition metal, A for group A element, X is carbon or nitrogen, 
and n=1, 2, or 3), so called MAX phases, are known for their unique 
combinations properties of ceramics and metals. It was found recently that 
etching atomically thin layers of aluminum from the MAX phases results in 

forming weakly bonded stacks of two-dimensional (2D) layers of early 
transition, coined as MXenes. The etching was carried out in fluoride 
contained aqueous systems. Thus MXenes surfaces are terminated with a 
mixture of groups including OH, O, and F. Sonicating MXenes in water 
results in delaminating few layers of MXenes from each other. However, to 
achieve a large-scale delamination, intercalation of a large compound 
between the layers prior to delamination is needed. MXenes were found to 
be a very interesting family of 2D materials since they are electrically 
conductors and hydrophilic. They also showed an excellent performance as 
electrodes for electrochemical super capacitors and Li-ion batteries. Here 
the recent progress in MXenes research from the synthesis to properties and 
applications will be covered, and in more details, large-scale delamination 
of MXenes will be discussed. Also, light will be shed on the performance of 
MXenes as electrode materials for electrochemical energy storage systems. 

9:20am  2D+EM+MG+NS+SE+SM+SS+TF-ThM5  Molecular Beam 
Epitaxy of Large area HfSe2(ZrSe2)/MoSe2 van der Waals 
Heterostructures on AlN(0001)/Si substrates, Athanasios Dimoulas, P. 
Tsipas, E. Xenogiannopoulou, D. Tsoutsou, K.E. Aretouli, J. Marquez-
Velasco, S.A. Giamini, N. Kelaidis, NCSR DEMOKRITOS, Greece 
Two dimensional (2D) semiconductor van der Waals heterostructures (HS) 
made of group IVB (Zr, Hf) and group VIB (Mo, W) metal dichalcogenides 
are predicted [1] to have type II or type III band alignments mainly because 
of a large difference in their workfunctions and band gaps, which makes 
them candidates for novel 2D staggered, or broken gap tunneling field 
effect transistors (TFET). We use molecular beam epitaxy (MBE) to grow 
high quality large area HfSe2 [2,3], ZrSe2 [4] and MoSe2 [5] films directly 
on AlN(0001)/Si(111) substrates. We confirm by RHEED and HRTEM that 
atomically thin layers (1-6 ML) are grown in single crystal form with a 
well-defined in-plane orientation on AlN. The films are continuous with 
smooth surface morphology (0.6 nm RMS roughness) and abrupt interfaces 
with no detectable reaction as verified by in-situ XPS and HRTEM. Micro 
Raman mapping for all layers confirms their structural integrity down to 
one monolayer and reveals very good uniformity on a cm-scale wafer and 
excellent stability of MoSe2 over a period of at least two weeks in air. 
Strong room temperature PL signal of 1 ML MoSe2 indicate high quality 
direct gap semiconductor in agreement with valence band structure details 
imaged by our in-situ ARPES [3, 5]. In a second step, MoSe2/HfSe2 [3] and 
MoSe2/ZrSe2 [4] HS were grown. Despite the large lattice mismatch, all 
layers are grown epitaxially as evidenced by RHEED with no detectable 
defects at the interfaces as confirmed by HRTEM suggesting good quality 
VdW epitaxy [6]. Using UPS the workfunctions (WF) were estimated to be 
5.2, 5.5 and 5.4 eV for MoSe2, HfSe2 and ZrSe2 respectively [3,4]. The last 
two differ substantially from theoretical values (~ 6 eV). Based on our STM 
and DFT calculations [3], we conclude that this difference is due to an 
ordered Se adlayer which lowers the HfSe2 and ZrSe2 WF bridging the WF 
gap between them and MoSe2. As a result, small valence band offsets of 
0.13 and 0.58 eV were found for the HfSe2/MoSe2 and ZrSe2/MoSe2 HS, 
respectively leading to type II band alignments. The availability of low cost 
wide-gap-AlN/Si wafers in 300 mm wafer sizes defines a manufacturable 
route for single crystal 2D semiconductor technology.  

We acknowledge financial support from ERC Advanced Grant 
SMARTGATE-291260. We thank IMEC for providing the AlN/Si 
substrates. 

[1] C. Gong et al., APL. 103, 053513 (2013) 

[2] R. Yue et al., ACS Nano9, 474 (2014) 

[3] K. E. Aretouli et al., APL106, 143105 (2015)  

[4] P. Tsipas et al., Microelectron. Eng. (2015), 
http://dx.doi.org/10.1016/j.mee.2015.04.113  

[5] E. Xenogiannopoulou et al, Nanoscale 7, 7896 (2015) 

[6] F.S. Ohuchi et al., JAP68, 2168 (1990) 

9:40am  2D+EM+MG+NS+SE+SM+SS+TF-ThM6  Surface 
Investigation of WSe2 Atomically Thin Film and Bulk Crystal Surfaces, 
Rafik Addou, H. Zhu, University of Texas at Dallas, Y.-C. Lin, S.M. 
Eichfeld, J.A. Robinson, Penn State University, R.M. Wallace, University of 
Texas at Dallas 
Heterogeneous fabrication of semiconducting two-  �dimensional layered  

 �materials presents a promising opportunity to develop highly tunable 
electronic and optoelectronic materials.(1-2) An example of crystalline 
monolayer of WSe2  �grown by chemical vapor deposition on epitaxial 
graphene (EG) grown from silicon carbide had been investigated at 
nanoscale level. The WSe2 surface was characterized using atomic force 
microscopy (AFM) scanning tunneling microscopy/spectroscopy 
(STM/STS) and X-ray photoelectron spectroscopy (XPS).(3,4) AFM and 
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large STM images show high-quality WSe2 monolayers. The sharpness of 
the W 4f and Se 3d core levels confirms the absence of any measurable 
reaction at the interface and oxide formation. The photoemission 
measurements of WSe2-Graphene interface suggest p-type doping due to 
charge transfer (EG withdraws electrons from WSe2) at the interface and 
formation of Schottky-type contact,(5) suggesting possible applications of 
such heterostructures as diodes and photodetectors. High-resolution STM 
images reveal atomic-size imperfections induced by Se vacancies and 
impurities. Additionally, the investigation of bulk WSe2(0001) surface 
shows spatial variation attributed to the presence of two components in W 
4f7/2 core level attributed to the presence of both n- and p-type behavior. 
STM images exhibit also various types of defect induced by vacancies and 
dopants. The STS spectra reveal two main characteristics i) expected p-type 
conductivity where the Fermi level located at the valence band edge, and ii) 
zero conductivity at negative bias explained by defect-induced band 
bending as reported on geological MoS2 crystal surfaces.(4) In conclusion, 
the spatial variation (topography and electronic structure) is more noticeable 
in bulk WSe2 grown by chemical vapor transport than in CVD thin films. 

This work was supported in part by the Southwest Academy on 
Nanoelectronics sponsored by the Nanoelectronic Research Initiative and 
NIST and the Center for Low Energy Systems Technology, one of six 
centers supported by the STARnet phase of the Focus Center Research 
Program, a Semiconductor Research Corporation program sponsored by 
MARCO and DARPA. 

 

(1) Yu-Chuan Lin et al., Nano Lett., 14 (2014) 6936-6941. 

(2) Yu-Chuan Lin et al., Nature Comm. arXiv:1503.05592v1. 

(3) Robert M. Wallace, ECS Trans. 64 (2014) 109-116. 

(4) Rafik Addou, Luigi Colombo, and Robert M. Wallace, ACS Appl. 
Mater. Interfaces (Accepted, 2015). 

(5) Horacio Coy Diaz, Rafik Addou, and Matthias Batzill, Nanosclae 6 
(2014) 1071-1078. 

11:00am  2D+EM+MG+NS+SE+SM+SS+TF-ThM10  A Kinetic Study 
on the Adsorption of Polar (Water) and Non-Polar (Benzene) Molecules 
on CVD Graphene, Nilushni Sivapragasam, U. Burghaus, North Dakota 
State University 
The adsorption kinetics of water and benzene at ultrahigh vacuum 
conditions were studied. Two different chemical vapor deposited graphene 
samples (graphene/SiO2 and graphene/Cu) were utilized. Different surface 
analytical techniques (Auger electron spectroscopy, X-ray photoelectron 
spectroscopy, and Raman spectroscopy) were used to characterize the 
surface. Subsequently, a kinetics study - to understand the adsorption of 
water and benzene- using thermal desorption spectroscopy (TDS) was 
conducted. The TDS results revealed the hydrophobicity of water on 
graphene. However, the adsorption kinetics of water on graphene did not 
mimic the bare substrate, i.e., graphene is non-transparent for water 
adsorption. In contrast, graphene was transparent for benzene adsorption. 
Furthermore, the adsorption kinetics of both, water and benzene were 
substrate dependent.  

11:20am  2D+EM+MG+NS+SE+SM+SS+TF-ThM11  Epitaxial 
Ultrathin MoSe2 Layers Grown by Molecular Beam Epitaxy, Ming-Wei 
Chen, M.B. Whitwick, O. Lopez-Sanchez, D. Dumcenco, A. Kis, Ecole 
Polytechnique Fédérale de Lausanne (EPFL), Switzerland 
Two-dimensional transition metal dichalcogenides (TMDs) have attracted 
widespread attention recently, and the focus is specifically on ultrathin 
layers due to the strong spin-orbit coupling and direct band-gap transition of 
single-layers. The unique properties of various TMDs also enable the 
possibilities for future optoelectronic applications. However, the synthesis 
of TMDs with uniform large-area and high-quality still remains 
challenging. While chemical vapour deposition has been demonstrated as a 
promising technique, the complexity of chemical precursors and the lacking 
of in-situ observation technique strongly hinder the progress.  

Here, We propose to use ultra-high vacuum molecular beam epitaxy (MBE) 
to grow MoSe2 ultrathin layers, down to single-layer in a controllable way. 
Epitaxial MoSe2 layers were successfully grown on different crystalline 
substrates via van der Waals epitaxy mechanism, benefited from the weak 
interlayer interaction and the lacking of dangling bonds. Reflection high 
energy electron diffraction (RHEED) was used to in-situ monitor the initial 
growth stage and revealed a clear transition of the streaks, demonstrating 
the formation of MoSe2 layer. Sharp streaks were obtained in the growth 
end, with the streak spacing corresponding to MoSe2 lattice constant, and no 
significant strain effect was observed. In order to demonstrate the validity 
of van der Waals epitaxy, different crystalline substrates with lattice 
mismatch up to 30 % have been tested. The epitaxial layers showed a 
smooth and uniform surface in atomic force microscopy, and the quality 
was further confirmed in Raman spectrum and transmission electron 

microscopy. Furthermore, photoluminescence of the single-layer MoSe2 

showing a sharp peak of ~1.58 eV at room temperature demonstrates the 
direct band-gap feature and indicates the potentials of photovoltaic 
applications. In the end, the growth of two-dimensional van der Waals 
heterostructures has also been addressed and the results pave way for 
heterostructure studies.  

In summary, molecular beam epitaxy has been proved to be a reliable route 
to grow large-area and high-crystalline transition metal chalcogenides, and 
is promising to facilitate the integration of other two-dimensional materials 
in the future.  

11:40am  2D+EM+MG+NS+SE+SM+SS+TF-ThM12  A Two-
Dimensional Oxide Quasicrystal, Stefan Förster, Institute of Physics, 
Martin-Luther-Universität Halle-Wittenberg, Germany, J.I. Flege, Institute 
of Physics, Univerisity of Bremen, Germany, K. Meinel, R. Hammer, M. 
Trautmann, Institute of Physics, Martin-Luther-Universität Halle-
Wittenberg, Germany, J. Falta, Institute of Solid State Physics, University 
of Bremen, Germany, T. Greber, Physik-Institut, University of Zürich, 
Switzerland, W. Widdra, Institute of Physics, Martin-Luther-Universität 
Halle-Wittenberg, Germany INVITED 
With the recent discovery of the first oxide quasicrystal (QC) aperiodicity is 
entering the field of two-dimensional materials [1]. Aperiodicity means that 
the system exhibits long-range order as expressed by sharp diffraction spots 
but since the ordering follows an aperiodic function the system is lacking 
translational symmetry. We report here on the complex growth process of 
the oxide QC involving a high-temperature wetting process and periodic 
approximant structures.  

The QC is derived from BaTiO3 thin films on a hexagonal Pt(111) substrate 
and exhibits a sharp twelve-fold diffraction pattern [1]. Based on scanning 
tunneling microscopy the aperiodic atomic structure had been resolved [1]. 
It is formed by surface atoms arranged in forms of squares, triangles, and 
rhombi with a next-neighbour distance of 0.69 nm. In addition to this 
dodecagonal atomic arrangement, building blocks of squares, triangles, and 
rhombi are also found on (2+√3) and (2+√3)² larger scales indicating the 
characteristic self-similarity of an ordered QC [1]. The high-resolution STM 
measurements allow furthermore to identify atomic flips in the structure 
indicating lattice excitations in the quasicrystal called phasons. Using low-
energy electron microscopy (LEEM) the preparation and the growth of the 
QC films on top of the hexagonal Pt(111) is monitored in all details from 
room temperature up to about 1200 K. LEEM shows that upon high-
temperature annealing large 3DBaTiO3 islands are formed with bare 
Pt(111)-(1x1) in between. At temperatures above 1020 K a wetting layer 
spreads on the free Pt area. This wetting process can be reversed by 
annealing in an oxygen atmosphere. In-situ LEEM measurements show that 
under these conditions the QC decays into small BaTiO3 islands. The 
observed interface-driven formation of a 2D QC from a perovskite oxide in 
contact with a hexagonal substrate is expected to be a general phenomenon.  

1. S. Förster, K. Meinel, R. Hammer, M. Trautmann, and W. Widdra, 
Nature 502, (2013) 215. 
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