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8:20am  2D+EM+IS+NS+PS+SP+SS-FrM1  Chemically Modifying 
Graphene for Surface Functionality, Paul Sheehan, S. Tsoi, S.C. 
Hernández, S.G. Walton, T.L. Reinecke, K.E. Whitener, J.T. Robinson, 
Naval Research Laboratory, R. Stine, Nova Research 
Graphene has many superlative properties that may be tailored for specific 
applications, or even enhanced, through chemical functionalization. 
Chemical functionalization dramatically changes almost every critical 
property of graphene, changing it from opaque to transparent, from 
diamagnetic to ferromagnetic, from electron rich or electron poor, from 
electrically conducting to insulating (and back again!). This extensive 
control suggests that chemically modified graphene may aid applications 
from flexible sensors to surface engineering. I will discuss how stacks of 2D 
materials can control the dominant surface forces—van der Waals,1 acid-
base interactions, electrostatic interactions, etc.—and so surpass 
conventional methods of preparing surfaces with, for example, self-
assembled monolayers. I will also briefly address goals as diverse as 
biosensing2 or sloughing off chemical warfare agents.3 
1 ACS Nano, 2014, 8 (12), pp 12410–12417 
2 BioTechniques, Vol. 57, No. 1, July 2014, pp. 21–30 
3 ACS Nano. 2013 Jun 25;7(6):4746-55. 

8:40am  2D+EM+IS+NS+PS+SP+SS-FrM2  Structural Phase Stability 
Control of Monolayer MoTe2 with Adsorbed Atoms and Molecules, Yao 
Zhou, E.J. Reed, Stanford University 
Of the Mo- and W- dichalcogenide monolayers, MoTe2 is particularly 
interesting because it exhibits a small energy difference (approximately 31 
meV per MoTe2) between its semiconducting 2H phase and metallic 1T’ 
crystal structures. This feature makes it particularly interesting for potential 
phase change applications.  

We study the adsorption of some common atoms and molecules onto 
monolayer MoTe2 and the potential for adsorption to induce a phase change 
between the semiconducting 2H and metallic 1T’ crystal structures of the 
monolayer. Using density functional theory with spin orbit and van der 
Waals energy contributions, we determined the most energetically favorable 
adsorption positions and orientations on the two phases of monolayer 
MoTe2. We then obtained the formation energies for these adsorption 
reactions and found that atomic adsorption generally favors 1T’ metallic 
phases while molecular adsorption favors semiconducting 2H phases. A 
possible application of this work may be the chemical stabilization of a 
preferred phase during the growth process. 

Further, we consider the MoxW1-xTe2 alloy monolayers that exhibit even 
smaller energy difference between phases. Our calculations indicate that it 
may be possible to engineer an alloy (0<x<0.5) such that specific molecules 
will induce a phase change to 1T’ while other molecules studied stabilize 
the 2H phase, which suggests that alloying may provide some molecular 
selectivity. This potentially provides the basis for molecular sensing 
applications due to the large electronic contrast between 2H and 1T’ phases. 

9:00am  2D+EM+IS+NS+PS+SP+SS-FrM3  Selective Nanochemistry on 
Graphene/Silicon Carbide: Substrate Functionalization and Polycyclic 
Aromatic Hydrocarbons Formation, Patrick Soukiassian, CEA, France 
 INVITED 
Graphene & silicon carbide (SiC) are advanced semiconductors having 
figures of merit scaling well above those of well-established ones [1,2]. 
Understanding/mediating SiC and graphene surfaces & interfaces properties 
are of central importance toward functionalization and applications. As a 
2D material, graphene is a single atomic layer of carbon atoms in a sp2 
bonding configuration. Therefore, functionalization remains challenging 
since interacting too strongly with the graphene atomic layer may change its 
bonding configuration and properties. Instead, interacting with the SiC 
substrate offers an alternative approach. The 1st case of hydrogen-induced 
metallization of a semiconductor surface has been shown for a 3C-SiC(001) 
surface [3]. Here, combining investigations using advanced experimental 
techniques such as STM/STS, vibrational & 3rd generation synchrotron 
radiation-based photoelectron spectroscopies together with state-of-art 

calculations will be presented and discussed. It includes: i) the 1st evidence 
of H/D-induced nanotunnel opening at a semiconductor sub-surface shown 
here for SiC [4]. Depending on H coverage, these nanotunnels could either 
be metallic or semiconducting. Dangling bonds generated inside the 
nanotunnels offer a promising template to capture atoms or molecules. 
These features open nano-tailoring capabilities towards advanced 
applications in electronics, chemistry, storage, sensors or biotechnology. 
Understanding & controlling such a mechanism open routes towards 
selective surface/interface functionalization of epitaxial graphene [4]. ii) 
The role of H interaction with graphene on SiC dust grains in polycyclic 
aromatic hydrocarbons (PAH) formation in the interstellar space with a 
possible route toward prebiotic roots of life in the universe [5].  

1–W. Lu, P. Soukiassian, J. Boeckl “Graphene: fundamentals and 
functionalities” MRS Bull. 37, 1119 (2012)  

2–P. Soukiassian “Will graphene be the material of the 21th century?” 
MRS Bull. 37, 1321 (2012) 

3-V. Derycke, P. Soukiassian, F. Amy, Y.J Chabal, M. D’angelo, H. 
Enriquez, M. Silly, “Nanochemistry at the atomic scale revealed in 
hydrogen-induced semiconductor surface metallization”, Nature Mat.2, 
253 (2003) 

4–P. Soukiassian, E. Wimmer, E. Celasco, Cl. Giallombardo, S. Bonanni, L. 
Vattuone, L. Savio, A. Tejeda, M. Silly, M. D’angelo, F. Sirotti, M. Rocca 
“Hydrogen-induced nanotunnel opening within semiconductor subsurface” 
Nature Com. 4, 2800 (2013) 

5–P. Merino, M. Švec, J.I. Martinez,P. Jelinek, P. Lacovig, M. Dalmiglio, 
S. Lizzit, P. Soukiassian, J. Cernicharo, J.A. Martin-Gago “Graphene 
etching on SiC grains as a path to interstellar PAHs’ formation” Nature 
Com. 5, 3054 (2014) 

9:40am  2D+EM+IS+NS+PS+SP+SS-FrM5  Intrinsic Wettability of 
Graphene, Haitao Liu, Department of Chemistry, University of Pittsburgh 
Graphene and graphite are long believed to be hydrophobic. Here we show 
that a clean graphitic surface is in fact mildly hydrophilic [1]. We find that 
an as-prepared graphene sample is hydrophilic with a water contact angle of 
ca. 40o. Upon exposure to ambient air, the water contact angle gradually 
increased to ca. 60o within 20 min and plateaued at ca. 80o after 1 day. 
Infrared (IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) 
showed that airborne hydrocarbon adsorbed onto the graphene surface 
during this process. Both thermal annealing and controlled UV/O3 treatment 
removed the hydrocarbon contaminants, which was accompanied by a 
concurrent decrease in the water contact angle. Our findings show that 
graphene is more hydrophilic than previously believed and suggest that the 
reported hydrophobic nature of graphene is due to unintentional 
hydrocarbon contamination from ambient air.  

Reference 

[1] Zhiting Li; et al.; Nature Materials, 12, 925-931, (2013)  

10:00am  2D+EM+IS+NS+PS+SP+SS-FrM6  Au-doped Graphene As a 
Promising Electrocatalyst for the Oxygen Reduction Reaction in 
Hydrogen Fuel Cells: Prediction from First Principles, Sergey Stolbov, 
University of Central Florida, M. Alcantara Ortigoza, Tuskegee University 
One of the main obstacles hindering large scale practical application of 
hydrogen fuel cells is a prohibited cost of the Pt (or Pt-based) catalysts for 
the oxygen reduction reaction (ORR) on the fuel cell cathode. In this work, 
we consider Au-doped graphene as an alternative to Pt for facilitating ORR. 
Our first-principles calculations show that Au atoms incorporated into 
graphene di-vacancies form a thermodynamically and electrochemically 
stable structure. Furthermore, calculation of the binding energies of the 
ORR intermediates reveals that Au-C bonding makes the C atoms 
neighboring to Au optimally reactive for ORR. The calculated ORR free 
energy diagrams suggest that the Au-graphene structures have an ORR 
onset potential as high as that of Pt. We also demonstrate that the linear 
relation among the binding energy of the reaction intermediates assumed in 
a number of works on computational high-throughput material screening 
does not hold, at least for this none purely transition-metal material.  

10:20am  2D+EM+IS+NS+PS+SP+SS-FrM7  Spontaneous Deposition of 
Palladium Nanoparticles on Graphene through Redox Reaction, 
Xiaorui Zhang, W. Ooki, Y.R. Kosaka, T. Kondo, J. Nakamura, University 
of Tsukuba, Japan 
Due to its unique properties such as huge surface area and excellent 
conductivity, graphene becomes great interesting for supporting noble metal 
catalysts. Some noble metals such as palladium, platinum, gold 
nanoparticles was reported to be able to spontaneous deposition on as-
synthesized reduced graphene oxide with external reducing agent-free 
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recently. Yet the mechanism of spontaneous deposition of metals on 
graphene has not been clarified until now. In the present research, we 
spontaneously deposited palladium nanoparticles on as-synthesized reduced 
graphene oxide in H2O medium without external reducing agent. It was 
found that the deposited amount of palladium varied with pH, meanwhile, 
the bivalent Pd2+ precursor was reduced to metallic palladium, and graphene 
was oxidized simultaneously with an increasing of its oxygen functional 
groups. The atomic ratio of the deposited Pd and the increased O in rGO 
located in a range from 1 to 2. As reducing agent-free, the mechanism on 
spontaneous redox deposition of metal nanoparticles on graphene was 
proposed, firstly, an efficient adsorption of metal precursor on graphene is a 
prerequisite which is determined by their electrical charges and adjusted by 
pH. Secondly, a positive galvanic potential between metal precursor and 
graphene is necessary for metal spontaneous deposition. 

10:40am  2D+EM+IS+NS+PS+SP+SS-FrM8  Gradient Electrochemical 
Response of Template Synthesized Thickness Sorted MoS2 Nanosheets 
for Cellular Level Free Radical Detection, Ankur Gupta, T. Selvan, S. 
Das, S. Seal, University of Central Florida 
The human body is a complex system capable of defending in adverse 
conditions. A classic example of such complex process is balanced 
equilibrium production between pro-oxidant and antioxidant in cells. 
However, when this equilibrium is disturbed, production of free radicals 
such as superoxide and nitric oxide strengthen, and causes serious cellular 
damages. Furthermore, myeloperoxidase (MPO) is released during the 
oxidative burst. This MPO combines with hydrogen peroxide (H2O2) and 
Cl- and generate hypochlorous acid (HOCl). This is a short-lived and 
powerful diffusible oxidant strong oxidizer and could react with O2- to 
produce OH·. Therefore, in physiological condition HOCl has a major role 
as a potent microbicidal agent in the immune defense; however, during the 
oxidative burst HOCl not only damage healthy tissue and generate radicals 
that are extremely reactive. Therefore, monitoring of the production of free 
radicals at the cellular level is important for diagnostic purpose. Over past 
years, several material have been used to develop sensors for free radical 
detection such as cerium oxide nanoparticles, MoS2 nanosheets and 
nanoparticles. However, detection of free radicals at cellular level is still a 
challenge.  

In this attempt, layered molybdenum disulfide (MoS2) were synthesized via 
hydrothermal method. SBA-15 polymer template were utilized during 
hydrothermal process to grow MoS2 around it to develop porosity. After the 
hydrothermal synthesis and washing, polymer template was removed by 
dissolving it in isopropanol which leaves high surface area layered MoS2 
crystal. Wet chemical exfoliation of MoS2 were carried out in aqueous 
solution of PluronicÒ F-127 having hydrophobic and hydrophilic chains. 
PluronicÒ F-127 was used to bring down the buoyant density of MoS2. Non-
templated nanosheets were synthesized as control. The exfoliated solution 
were centrifuged at 3000 rpm to remove large particle and supernatant was 
collected for density gradient ultracentrifugation (DGU). Separation of 
different thickness layers is carried out by DGU. Thickness sort MoS2 
nanosheets were characterized using AFM, XPS, HRTEM, Raman and UV-
Vis spectroscopy for structural and chemical analysis. XPS, HETEM and 
EFTEM analysis of nanosheets have illustrate the sulfur deficiency at the 
edges of the nanosheets. MoS2 nanosheets were deposited on glassy carbon 
electrode for cyclic-voltammetry and chronoamperometry measurements. 
Higher sensitivity and repeatability were demonstrated by nanosheets 
prepared via template method as compared to control for reactive oxygen 
and nitrogen species, and HOCl.  

11:00am  2D+EM+IS+NS+PS+SP+SS-FrM9  Methanol Synthesis on 
Defect-Laden Single-Layer MoS2 Supported on Cu(111): Results of a 
First Principles Study, D. Le, Takat B. Rawal, T.S. Rahman, University of 
Central Florida 
Despite being found to be the preferred structure in single layer MoS2, the 
sulfur vacancy row does not facilitate alcohol synthesis from syngas [1] 
because its narrow size limits adsorption, diffusion, and formation of 
possible intermediates. On the Cu(111) surface, strong interactions between 
MoS2 and Cu are expected to reduce the corrugations caused by sulfur 
vacancy rows, resulting in a larger exposure of vacancies to adsorbates 
which could enhance the catalytic activity of the row towards alcohol 
synthesis from syngas. Based on the results of our density functional theory 
(DFT) simulations utilizing the DFT-D3 correction for accounting the van 
der Waals interactions, we show that: (1) there is a significant charge 
transfer from the Cu(111) surface to MoS2, enhancing its catalytic 
properties, (2) the binding energies of CO and dissociated H2 increase by 
0.3 eV in comparison to that on unsupported MoS2, indicating stronger 
interactions, and (3) the barriers for forming intermediate species in alcohol 
synthesis process reduce significantly in comparison to that on unsupported 
MoS2. On the basis of these energetics, we conclude the Cu(111) substrate 
promotes methanol synthesis from syn gas on single-layer MoS2 with a 
vacancy row. We will also present the energetic pathways for the 

formations of other reaction products such as methane, formaldehyde, and 
water, as well as that of (the reverse) water gas-shift reaction. 

[1] D. Le, T. B. Rawal, and T. S. Rahman, J. Phys. Chem. C118, 5346 
(2014). 

*This work is supported in part by the U.S. Department of Energy under 
grant DE-FG02-07ER15842 

11:20am  2D+EM+IS+NS+PS+SP+SS-FrM10  The Happy Marriage of 
Graphene and Germanium: Graphene Achieves Exceptional 
Conductivity and Protects Germanium from Oxidizing, Richard Rojas 
Delgado, University of Wisconsin-Madison, F. Cavallo, University of New 
Mexico, R.M. Jacobberger, J.R. Sanchez Perez, D. Schroeder, M.A. 
Eriksson, M.S. Arnold, M.G. Lagally, University of Wisconsin-Madison 
The properties of graphene (G) make it an outstanding candidate for 
electronic-device applications, especially those that require no band gap but 
a high conductance. The conductance, involving both carrier mobility and 
carrier concentration, will depend critically on the substrate to which G is 
transferred. We demonstrate an exceptionally high conductance for G 
transferred to Ge(001) and provide an understanding of the mechanism.[1] 
Essential in this understanding is an interfacial chemistry consisting of Ge 
oxide and suboxide layers that provide the necessary charges to dope the 
graphene sheet, and whose chemical behavior is such that one can obtain 
long-term stability in the conductance. In contrast, when high-quality G is 
grown directly on Ge (100), (111), or (110), the conductance is 
unexceptional, but oxidation of the surface is significantly delayed and 
slowed, relative to both clean Ge and Ge with G transferred to its surface . 
[2,3] We fabricate Hall bars in G transferred to Ge and G grown using 
atmospheric-pressure CVD with methane precursors . X-ray photoelectron 
spectroscopy (XPS) is used to investigate the oxide in all stages of the 
measurements. The sheet resistance and Hall effect are measured from 
300K to 10K for transferred and grown samples. Values of mobility and 
carrier concentration are extracted. It appears we have reached the highest 
combination of mobility and carrier concentration in graphene (suspended 
or supported) for temperatures from 10 to 300K. The implication is that the 
primary mechanisms for scattering charge in the G, roughness and a non-
uniform electrostatic potential due to fixed charges, have limited effect 
when the substrate is oxidized Ge. Finally the subsequent oxidation kinetics 
of Ge (001) are compared for graphene directly grown on Ge and for 
graphene transferred to Ge. XPS shows that for graphene grown on Ge(001) 
the interface is oxide-free and remains so over long periods of time. For 
graphene transferred to Ge(001) the interface contains stoichiometric and 
substoichiometric oxides. The thickness of these oxides increases with time, 
but quite slowly. Using spatially resolved XPS, we propose a model of 
diffusion limited oxidation initiated at edges of the graphene.  

Research supported by DOE. 

[1]Cavallo, Francesca, et al. "Exceptional Charge Transport Properties of 
Graphene on Germanium." ACS nano 8.10 (2014): 10237-10245. 

[2] R. M. Jacobberger, et al. "Oriented Bottom-Up Growth of Armchair 
Graphene Nanoribbons on Germanium." Nature Comm., under review. 

[3] R. Rojas, et. al "Passivation of Ge by Graphene.", in process. 
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