AVS 62nd International Symposium & Exhibition | |
Magnetic Interfaces and Nanostructures | Tuesday Sessions |
Session MI+SA-TuA |
Session: | Spin Currents, Spin Textures and Hybrid Magnetic Structures |
Presenter: | Andrada-Oana Mandru, Ohio University |
Authors: | A.-O. Mandru, Ohio University J.P. Corbett, Ohio University A.L. Richard, Ohio University J.M. Lucy, Ohio State University D.C. Ingram, Ohio University F. Yang, Ohio State University A.R. Smith, Ohio University |
Correspondent: | Click to Email |
Depositions of magnetic atoms such as Mn onto wide-gap semiconducting GaN surfaces give rise to various MnGa alloyed nanostructures, some having promising magnetic properties. Co-depositions of Mn and Ga result in ferromagnetic alloys that grow with high epitaxial quality on GaN. Such sharp interfaces undoubtedly make MnGa/GaN a very attractive spintronic system. Growth under slightly Mn-rich conditions (Mn:Ga composition ratio ~1.09) causes Mn atoms to incorporate at different rates; surfaces become highly Mn-rich, while the bulk retains a 1:1 stoichiometry. In addition, their magnetic properties could potentially be tailored by altering elemental composition and/or film thickness. Motivated by these intriguing observations and possibilities, we explore what happens when crossing the Mn:Ga 1:1 stoichiometric limit into the less studied Ga-rich side. We combine various techniques to investigate in detail the growth, structure and magnetism of MnGa alloys with different thicknesses and compositions, when coupled with GaN substrates.
Samples are prepared using molecular beam epitaxy with GaN/Sapphire used as starting substrate. Subsequent depositions involve a fresh film of GaN followed by thin (~30-50 nm) or ultra-thin (~3.3 nm) MnGa films. Manganese and gallium are co-evaporated from Knudsen cells while keeping the substrate temperature at ~250 °C. The growth is monitored in real time using a 20 keV reflection high energy electron diffraction system. In-situ room temperature scanning tunneling microscopy investigations reveal highly epitaxial films with smooth surfaces that exhibit a rich variety of reconstructions. The Mn:Ga composition ratios range from ~1 (stoichiometric) to ~0.42 (very Ga-rich), as determined by Rutherford backscattering spectrometry. For stoichiometric films, x-ray diffraction characterizations show primarily MnGa peaks; upon transitioning into the Ga-rich regime, we find a co-existence of Mn3Ga5 and Mn2Ga5 phases, with Mn2Ga5 becoming predominant for the highly Ga-rich samples. Magnetic investigations reveal that all films exhibit ferromagnetism, including the very Ga-rich ones. Vibrating sample magnetometry measurements performed on the thin samples show stepped hysteresis loops, along with a decrease in coercivity and magnetic moment values as the Ga concentration increases. Additional superconducting quantum interference device measurements performed on the ultra-thin samples show that large magnetic anisotropies are induced by decreasing the thickness of our films. Most recently, similar investigations applied to FeGa magnetostrictive alloys reveal very interesting surfaces and magnetic properties.