AVS 62nd International Symposium & Exhibition | |
Energy Frontiers Focus Topic | Monday Sessions |
Session EN+AS+EM+NS+SE+SS+TF-MoA |
Session: | Solar Cells II |
Presenter: | Jason Baxter, Drexel University |
Authors: | G.W. Guglietta, Drexel University B.T. Diroll, University of Pennsylvania E.A. Gaulding, University of Pennsylvania J.L. Fordham, University of Pennsylvania S. Li, Drexel University C.B. Murray, University of Pennsylvania J.B. Baxter, Drexel University |
Correspondent: | Click to Email |
Colloidal semiconductor nanocrystals have been used as building blocks for electronic and optoelectronic devices ranging from field effect transistors to solar cells. Properties of the nanocrystal films depend sensitively on the choice of capping ligand to replace the insulating synthesis ligands. Thus far, ligands leading to the best performance in transistors result in poor solar cell performance, and vice versa. To gain insight into the nature of this dichotomy, we used time-resolved terahertz spectroscopy measurements to study the mobility and lifetime of PbSe nanocrystal films prepared with five common ligand-exchange reagents. Non-contact terahertz spectroscopy measurements of conductivity were corroborated by contacted van der Pauw measurements of the same samples. The films treated with different displacing ligands show more than an order of magnitude difference in the peak conductivities and a bifurcation of time-dynamics. Inorganic chalcogenide ligand-exchanges with sodium sulfide (Na2S) or ammonium thiocyanate (NH4SCN) show high THz mobilities above 25 cm2V-1s-1, which is desirable for transistors, but nearly complete decay of transient photocurrent within 1.4 ns. The high mobility with NH4SCN and Na2S exchanges is more than offset by their short lifetimes and results in diffusion lengths of only ~200 nm. In contrast, ligand exchanges with 1,2-ethylenediamine (EDA), 1,2-ethanedithiol (EDT), and tetrabutylammonium iodide (TBAI) show ~5x lower mobilities but much longer carrier lifetimes, with ~30% of photoexcited carriers remaining for >10 ns. The long lifetimes with EDA, EDT, and TBAI yield diffusion lengths of at least 500 nm, which is approaching the film thickness desired for strong light absorption in solar cells. This bifurcated behavior may explain the divergent performance of field-effect transistors and photovoltaics constructed from nanocrystal building blocks with different ligand exchanges.