AVS 62nd International Symposium & Exhibition | |
Spectroscopic Ellipsometry Focus Topic | Thursday Sessions |
Session EL+AS+BI+EM-ThA |
Session: | Optical Characterization of Nanostructures and Metamaterials |
Presenter: | Lance Hubbard, University of Arizona |
Authors: | L.R. Hubbard, University of Arizona A.J. Muscat, University of Arizona |
Correspondent: | Click to Email |
Electroless deposition (ELD) produces conformal coatings at low temperatures. ELD occurs by chemical reduction of metal ions without an externally applied potential or catalyst layer. In this paper, we report on a nonaqueous ELD process that uses a charge compensator, but not a ligand or complexing agent. The weak electrostatic attachment of the charge compensator to the ions and particles in solution and the high pH conditions improve the driving force for metal deposition. Si(100) native oxide was hydroxylated and terminated with a self-assembled amine layer (4 mM (3-aminopropyl)-trimethoxysilane in methanol). Metal films were deposited by suspending samples in a bath made by dissolving Cu(II) chloride in ethylene glycol (reducing agent), and adding 1-butyl-3-methylimidazolium tetrafluoroborate as a charge compensator. The Cu particle ion shell is attracted to the positively charged amine groups at high pH depositing a thin metal film that is both continuous and cohesive. Annealing the coupons at 200oC in nitrogen promoted electrically conductive film formation. Electron microscopy images of the coated substrates showed a 80-95 nm thick film of 3 nm diameter particles. Four-point probe measurements of the films yielded electrical conductivities in the range 106-107 S/m (10-80% of bulk conductivty). The surface plasmon resonance (SPR) peak of the Cu nanoparticles in the bath and film was at 585 nm. Light scattering measurements and transmission electron microscopy (TEM) images yielded a size distribution of 3.1±1.56 nm. Scanning electron microsopy (SEM) images at various angles in relation to the films were taken to examine film morphology and thickness. Spectroscopic ellipsometry (SE) data were modelled with bulk, nanophase d-band transition, and SPR absorbances. The SE agreed well with UV-VIS results for the SPR and shows an increasing contribution from d-band transitions with increasing ionic liquid concentration. SEM and Fourier transform infrared (FTIR) spectroscopy were used to determine film thicknesses and chemistry.