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9:00am  TF+PS+SE-MoM3  Ternary and Quaternary Thin Layers 
Deposited by Magnetron Sputtering, Marie-Paule Besland, J. Tranchant, 
E. Janod, C. Benoit, L. Cario, P.Y. Jouan, M. Carette, A. Lafond, Institut 
des Matériaux Jean Rouxel – Université de Nantes, France, R. Meunier, S. 
Fabert, Institut des Matériaux Jean Rouxel – Université de Nantes and 
Crosslux, France, P.Y. Thoulon, M. Ricci, Crosslux Company, France 
Developing new functionalities mainly depend on the use of new functional 
material. Nevertheless, prior to envision any development of functional 
materials towards devices, two major challenges have to be tackled. The 
former one is to obtain thin layers of active and functional materials. The 
second challenge is to recover the functional properties on thin layers. For 
several decades, magnetron sputtering is a widely used deposition technique 
in microelectronics. Moreover, magnetron sputtering enables to deposit 
well-crystallized film of insulating or conducting materials, at low 
temperatures, over large areas, while controlling the film composition and 
microstructure, even for complex and multi-component materials. Thus, on 
the basis of well established know-how in deposition process and multi-
layered functional structures [1], the deposition of GaV4S8 material in the 
form of thin layers has been investigated by both non-reactive RF 
magnetron sputtering and reactive process in Ar/H2S mixture [2]. While the 
functionality (Resistive switching =RS) was first evidenced on single 
crystals, our studies demonstrated that metal-insulator-metal (MIM) 
structures based on GaV4S8 thin layers, deposited by magnetron sputtering, 
exhibit as well a similar RS [3]. More recently, we focus on the historical 
chalcogenide absorber for solar cells: CIGSe. We developed a dedicated 
and home-designed vacuum chamber for CIGSe thin films deposition using 
“one step sputtering”. In that study, CIGSe thin films were deposited on 
SLG/Mo substrates by RF magnetron sputtering and then ex-situ annealed 
under controlled atmosphere. Deposition and annealing parameters can 
modify both chemical composition and structural properties. In particular, 
different preferential crystalline orientation may be induced and can modify 
functional properties in a large extend. Finally, the performances of CIGSe 
solar cell completely realized by magnetron sputtering technique will be 
compared to published efficiency values in the 8.9- 10.5 % range [5].  
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9:20am  TF+PS+SE-MoM4  Molecular Dynamics Simulations of 
TiN/TiN(001) Growth, Daniel Edström, D.G. Sangiovanni, V. Chirita, L. 
Hultman, Linköping University, Sweden, I.G. Petrov, J.E. Greene, 
University of Illinois at Urbana Champaign 
The Modified Embedded Atom Method (MEAM) interatomic potential 
within the classical Molecular Dynamics (MD) framework enables realistic, 
large-scale simulations of important model materials such as TiN. As a step 
toward s understanding atomistic processes controlling the growth of TiN 
on a fundamental level, we perform large-scale simulations of 
TiN/TiN(001) deposition using a TiN MEAM parameterization which 
reproduces experimentally-observed surface diffusion trends, correctly 
accounts for Ehrlich barriers at island step edges [1], [2], and has been 
shown to give results in excellent qualitative and good quantitative 
agreement with Ab Initio MD based on Density Functional Theory (DFT) 
[3], [4]. Half a monolayer of TiN is deposited on 100x100 atom TiN(001) 
substrates at a rate of 1 Ti atom per 50 ps, resulting in simulation times of 
125 ns. The TiN substrate is maintained at a typical epitaxial growth 
temperature, 1200 K during deposition using Ti:N flux ratios of 1:1 and 1:4 
with incident atom energies of 2 and 20 eV to probe the effects of N2 partial 
pressure and substrate bias on TiN(001) growth modes. We observe 
nucleation of TixNy molecules; N2 desorption; the formation, growth and 
coalescence of mixed <100>, <110>, and <111> faceted islands; as well as 
intra- and interlayer mass transport mechanisms. For equal flux ratios at 2 
eV incidence energy, islands begin to form atop existing islands at 

coverages ≳ 0.25 ML, leading to 2D multilayer growth. At 20 eV, the film 
growth mode shifts toward layer-by-layer growth. We discuss the 
implications of these results on thin film growth and process tailoring. Our 
classical MD predictions are supported and complemented by DFT-MD 
simulations. 
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V. Chirita, “Ab initio and classical molecular dynamics simulations of N2 
desorption from TiN(001) surfaces,” Surf. Sci., vol. 624, pp. 25–31, Jun. 
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9:40am  TF+PS+SE-MoM5  Surface Chemistry of Pd and Ag 
Interaction with 3C-SiC Thin Films Deposited on Si(111) by Pulsed 
Laser Depositon, Rachel Seibert, D. Velazquez, J. Terry, Illinois Institute 
of Technology, K.A. Terrani, C. Baldwin, F. Montgomery, K. Leonard, J. 
Hunn, P. Schuck, R. Stoller, Oak Ridge National Laboratory, S. Saddow, 
University of South Florida 
The surface interactions of nuclear fission products with the barrier SiC 
layer of Tri-Structural Isotropic (TRISO) coated fuel particles limit fuel cell 
performance. In particular, Pd and Ag reduce the structural integrity of SiC. 
An understanding of the reaction mechanisms and kinetics of these 
interactions under normal operation as well as accident conditions is critical 
for the development of advanced nuclear reactors, but currently is not well 
understood. This surface chemistry is examined both in spent TRISO fuel 
on SiC/Si(111) thin films and compared to theoretical calculations done by 
Schuck and Stoller at Oak Ridge National Laboratory [1]. Synchrotron 
extended X-ray absorption fine structure (EXAFS) spectroscopy 
measurements were conducted on the irradiated TRISO fuel pellet to 
characterize atomic interactions at the Pd K-edge ( 24350 eV). The thin 
films were grown epitaxially via pulsed laser deposition (PLD), as 
evidenced by reflection high energy electron diffraction (RHEED) patterns. 
Pd and Ag were deposited on separate SiC/Si(111) films in thickness 
increments from 0.5-5 monolayers. The chemical structure of the thin films 
is analyzed using X-ray photoelectron spectroscopy (XPS).  

[1] Schuck, P.C. and R.E. Stoller, Ab initio study of the adsorption, 
migration, clustering, and reaction of palladium on the surface of silicon 
carbide. Phys. Rev. B 83, (2011) 

10:00am  TF+PS+SE-MoM6  High Thermal Stability Nanocrystalline 
Gold, Part I, Ronald Goeke, N. Argibay, J.E. Mogonye, K.M. Hattar, S.V. 
Prasad, Sandia National Laboratories 
Gold coatings that are ideally suited for low electrical contact resistance 
(ECR) applications are mechanically soft and exhibit unacceptable amounts 
of adhesion and friction. To mitigate these problems gold for ECR 
applications is typically alloyed with Ni, Co or Fe which increases the film 
hardness and wear resistance. A key limitation of hard gold coatings is the 
propensity for the non-noble alloying metal species to diffuse to the surface 
and form non-conductive oxide films that can severely impact the electrical 
contact behavior. These traditional hard gold films, which are fabricated via 
electro-deposition, have been limited to electrochemical compatible 
materials. Using co-deposition of Au-ZnO by electron beam evaporation we 
have eliminated the electrochemical material limitations and synthesized a 
new class of hard gold thin films. The ceramic phase is used to strengthen 
the composite via grain refinement. The resulting nanocrystalline gold thin 
film can replace typical hard gold films and exhibits enhanced thermal 
stability as the refractory ceramic phase is kinetically limited and has no 
oxidative potential for migration to the surface. The synthesis, 
characterization, and thermal stability against grain sintering will be 
discussed. 

Sandia National Laboratories is a multi-program laboratory managed and 
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy's National Nuclear 
Security Administration under contract DE-AC04-94AL85000. 
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10:40am  TF+PS+SE-MoM8  High Thermal Stability Nanocrystalline 
Gold Thin Films, Part II, Nicolas Argibay, J.E. Mogonye, R.S. Goeke, 
K.M. Hattar, M.T. Dugger, S.V. Prasad, Sandia National Laboratories 
In the second part we present the result of investigations of the bulk 
transport properties, thermal and mechanical stability, and mechanical 
properties of electron beam codeposited Au-ZnO as a function of 
composition and temperature (up to a homologous temperature of 0.5). A 
high throughput method for determining the average grain size in 
electrically conductive metal-ceramic thin films will be presented, founded 
on a correlation between grain boundary density and electrical resistivity 
(Mayadas-Shatzkes and Sondheimer-Fuchs models), and compared to 
microstructural characterization using backscatter and transmission electron 
diffraction, SEM, and XPS. 

Sandia National Laboratories is a multi-program laboratory managed and 
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy's National Nuclear 
Security Administration under contract DE-AC04-94AL85000. 

11:00am  TF+PS+SE-MoM9  Growth and Phase Stability of Zirconium 
Diboride Thin Films, David Stewart, D.J. Frankel, R.J. Lad, University of 
Maine 
Zirconium diboride (ZrB2) has metallic-like electrical and thermal 
conductivities up to its melting point of 3246°C and is also thermal shock 
resistant, making it an excellent material for use in harsh, high temperature 
environments. Presently, much of the literature on boride materials concerns 
bulk, sintered materials, and less is known about ZrB2 thin films. Here we 
demonstrate the growth of ZrB2 thin films by e-beam co-evaporation of 
elemental Zr and B sources on sapphire, silicon, and silica substrates. Films 
were deposited over a range of Zr:B compositions and were characterized 
before and after annealing up to 1000°C in air or under vacuum (10-8 Torr). 
Scanning electron microscopy and X-ray photoelectron spectroscopy (XPS) 
indicated that as-deposited films are homogeneous, with a smooth 
morphology and covalent bonding character. X-ray diffraction (XRD) 
revealed that films deposited at temperatures from ambient to 600°C are 
typically amorphous, and annealing in vacuum up to 1000°C can cause the 
formation of a ZrB2 crystalline phase that coexists with an amorphous 
matrix, depending on the Zr:B ratio. Films annealed in air as low as 800°C 
become heavily oxidized and boron-depleted, leaving behind a monoclinic 
ZrO2 polycrystalline film. XPS depth profiles suggest the formation of a 
boron oxide phase in air that evaporates from the surface at high 
temperatures, consistent with surface oxidation behavior reported for bulk 
ZrB2 materials. Electrical conductivities of as-deposited films, measured 
with a 4-point probe, range from 0.3 – 8.3 x 106 S/m depending on the Zr:B 
ratio, and the films retain their conductive nature after vacuum annealing. 
The ZrB2 crystalline phases exhibit a preferred (100) crystallographic 
texture, and valence band XPS measurements confirm the existence of 
hybridized B2p-Zr4d bonding states. Understanding the high temperature 
stability of ZrB2 films is important for developing it as a potentially stable 
conducting film for electronic device applications in harsh environments. 

11:20am  TF+PS+SE-MoM10  Thickness Dependence of High 
Frequency Magnetic Properties for Thin Films of Iron-Gallium-Boron, 
Colin Rementer, Y. Kim, J.P. Chang, University of California at Los 
Angeles 
Iron gallium boron, i.e. (Fe80Ga20)xB1-x or FeGaB, is a material of 
considerable interest for high frequency, multiferroic applications. Lou et 
al. discovered that the addition of boron to the magnetostrictive material 
Galfenol (Fe80Ga20 or FeGa) led to a decrease in coercivity (~1 Oe), 
decrease in ferromagnetic resonance (FMR) linewidth (~20 Oe) at X band, 
and an increase in piezomagnetic coefficient (~7 ppm/Oe). The physical 
properties were optimized in (Fe80Ga20)88B12 with ~100 nm thickness (Lou, 
J. et al. 2007). The material has been incorporated into several multiferroic 
systems with great success ( Lou, J. et al. 2009). It is a material of great 
interest for integration into various multiferroic antenna systems. To have a 
better understanding of the material, a more thorough study on the 
fundamental properties of the material at different thicknesses is needed, as 
well as how that thickness can affect the tunability of resonant frequency 
and magnetoelectric coupling in multiferroic heterostructures when 
incorporated with ferroelectric single crystals. 

FeGaB was grown via co-sputtering of Fe80Ga20 and boron targets via DC 
magnetron and RF magnetron sputtering, respectively. The FeGa target was 
held at 60 W and the boron power was adjusted to tune the boron 
concentration, from 9 - 18%. FeGaB films were grown with thicknesses 
ranging from 30 nm – 500 nm, and a growth rate of 7 nm/min was achieved. 
The coercivity and saturation magnetization of the FeGaB films decreased 
(~10 Oe), and increased (1200 emu/cc), respectively, with decreasing 
thickness (30 nm). Ferromagnetic resonance (FMR) linewidth was 
measured at X band (9.6 GHz), and it was found that it narrowed to 140 Oe 
with decreasing thickness at 30 nm. Both Fe75Ga25 and Fe60Ga22B18 were 

shown to be magnetoelastic, having magnetostriction constants of around 
30 ppm and 60 ppm, respectively. The magnetic properties of FeGaB are 
being optimized to the properties measure by Lou et al. to ensure the rigor 
of the thickness dependence study (Lou, J. et al. 2007). The effect of 
inducing stronger in-plane anisotropy in the FeGaB films was investigated 
via an in situ magnetic field applied during deposition, and post-deposited 
magnetic annealing is being explored as a function of thickness.  

11:40am  TF+PS+SE-MoM11  Optimizing Magnetic Confinement for 
High Productivity PVD System Linear Scanning Magnetron, V. 
Kudriavtsev, Robert Norris, T. Bluck, I. Latchford, Intevac, Inc. 
High productivity vacuum PVD system cost of ownership is very sensitive 
to sputtering target utilization. In this paper we discuss magnetic array 
design methodology that is required to achieve excellent plasma 
confinement that can lead to most uniform target erosion both magnetic and 
nonmagnetic targets. Design trade-offs are more challenging when using 
highly magnetic target materials, such as Nickel. These materials have 
lower PTF (pass through flux) and also affect magnetic field in all 
directions. Stronger magnets allow the fields to penetrate magnetic target 
material and judicious design process allows minimizing negative effects of 
field shunting. 

First we develop static magnetic simulations model; magnetic properties are 
assigned to magnets, magnetic materials and also properties to nonmagnetic 
elements. Resulting computations are presented in a form of magnetic field 
component and Bz component on the surface of the target or in the vicinity 
of that surface. The magnetic track is determined by searching for locations 
where perpendicular component of magnetic field Bz=0 and we review 
variations in Bx and By along this track. Magnetic field characteristics are 
studied at various distances from magnets, sizing the magnetic array 
configuration, magnet dimensions, and their polarity for a selected 
objective. Usually this objective is to provide certain field strength at 
certain distance away from magnets. One can increase the strength of N or S 
polarity in the array, creating balanced or unbalanced magnetron 
configuration, that affect maximum field strength, erosion profile and 
erosion in the middle of the target where the absolute value of magnetic 
field reaches a maximum. Magnetic field characteristics are extracted from 
the erosion track profile and theoretical erosion profile is calculated 
resulting from the current array design. These profiles allow estimation of 
the “static” target utilization and if necessary to create optimization cycle 
where magnetic characteristics of the design (parameters) are 
computationally changed to reach desired erosion profile. Once the final 
computer design is selected, engineers build the first prototype of magnetic 
array and evaluate its magnetic properties using a 2d magnetic scanner that 
provide B, Bx, By, Bz components of magnetic field in plane on a distance 
from magpack. The next step of the analysis utilizes experimentally 
extracted magnetic field (or previously computed theoretical magnetic field) 
to estimate resulting 2D erosion profile that is due to the magnet non-
uniform and non-linear motion. Finally, using the ray tracing method we 
perform film uniformity analysis for a substrate of given size which is 
located on a defined distance away from the sputtering target. That analysis 
is transient and factors in substrate nonlinear motion. Resulting film 
uniformity is estimated as a superposition of multiple substrate positions as 
it moves under the target. 
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