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8:00am  TF+MS+PS-WeM1  ALD and Beyond CMOS Materials, 
Robert Wallace, University of Texas at Dallas INVITED 
Two-dimensional layered materials, such as graphene and transition metal 
dichalcogenides (TMDs), have been recently proposed for a number of 
novel device concepts due to their interesting materials properties. For 
example, the possibility of low surface defect densities due to an anticipated 
dearth of surface defects and dangling bonds raises the prospect of 
improved performance for low power tunnel field effect logic devices that 
switch on and off very rapidly due to the anticipated steep subthreshold 
slope characteristic. However, for ALD processes, such surfaces present 
significant challenges for nucleation and growth. This talk will review our 
recent work on in-situ characterization of 2D materials for such device 
applications. This research is supported in part by the STARNet Center for 
Low Energy Systems Technology, sponsored by the Semiconductor 
Research Corporation (SRC) and DARPA, the SWAN Center sponsored by 
the SRC Nanoelectronics Research Initiative and NIST, and by an IBM 
Faculty Award. 

9:00am  TF+MS+PS-WeM4  Combining Gas Phase Aerosol Deposition 
with Atomic Layer Deposition for Fast Thin Film Deposition: A Case 
Study of Transparent Conducting ZnO, Elijah Thimsen, Washington 
University, St. Louis, M. Johnson, A. Wagner, A. Mkhoyan, U.R. 
Kortshagen, E.S. Aydil, University of Minnesota 
Atomic layer deposition (ALD) has emerged as a powerful and scalable 
technique for a variety of applications where layer-by-layer control over 
film properties and conformal deposition in tight geometries are needed. 
One common criticism of ALD is that it is slow and may become 
uneconomical when thick films and high deposition rates are needed. In 
fact, deposition rate is often an issue even with physical vapor deposition 
methods such as sputtering and also chemical vapor deposition. One way to 
deliver material onto a substrate at high rates is through deposition of 
nanoparticles. Gas phase aerosol deposition is particularly attractive 
because rates as high as 100 nm/s are possible even at low temperatures. 
However, aerosol deposition often yields porous films unsuitable for 
optoelectronic applications. In this talk, we describe a new two-step strategy 
for depositing dense thin films at high rates. Our strategy combines the high 
rates of aerosol deposition with advantages of ALD. In the first step 
nanoparticles are synthesized in the gas-phase and deposited onto suitable 
substrates by aerosol deposition. In the second step, the space between the 
nanoparticles is infilled by ALD. This is a versatile approach since there are 
many material options for forming both the nanoparticle network and the 
ALD coating. In the specific example that will be discussed in this talk, the 
crystalline nanoparticles are synthesized in a nonthermal plasma containing 
the precursors that lead to nucleation and growth of the desired material. 
These nanocrystals are deposited on suitable substrates through supersonic 
expansion and inertial impaction. Using this approach, we demonstrate fast 
deposition of nanocrystalline ZnO films, an earth-abundant, nontoxic, low 
cost material that can be used as a transparent conducting oxide (TCO), 
from a plasma containing Ar, O2 and diethylzinc. The space between the 
particles is filled either by Al2O3 or Al-doped ZnO (AZO) to give 
continuous TCO films. After annealing in H2 and coating with Al2O3, the 
ZnO nanocrystal network becomes conductive with Hall effect electron 
mobilities as high as 3.0 cm2 V-1 s-1. Depending on the combination of the 
nanocrystals, ALD coating, and post processing, we have obtained 
transparent films with resistivity values as low as 3.8 x10-3 Ohm cm. The 
lowest resistivity films were obtained with undoped ZnO nanoparticles 
coated with AZO. The resistivity can be improved by doping the 
nanocrystals, which has proven to be challenging. We will discuss the 
effects of nanocrystal size, doping of nanocrystals in the gas phase, and film 
porosity on electrical conductivity. 

9:20am  TF+MS+PS-WeM5  Detecting Order in the Molecular Layer 
Deposition of Polymer Films by X-Ray Diffraction, David Bergsman, 
R.W. Johnson, R. Britto, S.F. Bent, Stanford University 
The deposition of highly ordered, thin, organic films is of great importance 
to a variety of fields. The development of biological sensors, organic solar 
cells, and optical devices relies on the ability to grow thin layers of organic 
material with various thicknesses, compositions, functionalities, and levels 

of crystallinity. One promising method of creating such films is molecular 
layer deposition (MLD), which uses an alternating sequence of self-
saturating reactions by vapor-phase organic precursors at the substrate to 
grow films in a layer-by-layer fashion. This technique has been 
demonstrated with a variety of precursor chemistries and has been shown 
capable of growing films on high aspect ratio features with low surface 
roughness and high conformality. But despite the growing use of MLD, 
many questions still remain as to the orientation of the molecular chains 
within the deposited films and the packing of these chains. Many different 
factors may contribute to varying degrees of crystallinity during growth, 
such as chain-chain steric repulsion, Van der Waals forces, chain growth 
angle, and inter-chain hydrogen bonding. Here, we demonstrate that some 
MLD chemistries can form nanoscale organic films that exhibit well-
ordered packing. Polyurea MLD films with different thicknesses and 
backbone chemistries were grown in an MLD reactor and then examined 
with x-ray diffraction (XRD) using synchrotron radiation at the Stanford 
Synchrotron Radiation Lightsource (SSRL). Spectroscopic ellipsometry was 
used to observe film thickness, while x-ray photoelectron spectroscopy and 
Fourier transform infrared spectroscopy monitored for film degradation. 
XRD results for the polyurea MLD films show peaks at q-values of 1.5/Å, 
corresponding to a d-spacing around 4.2 Å. Changing the precursor from a 
more rigid to a more flexible backbone leads to variations in d-spacing and 
diffraction intensity. Growth on substrates with different surface chemistries 
and roughness, as well as the effect of heating and re-cooling the films, is 
also explored. These results suggest that thin organic films with varying 
levels of packing order can be grown using MLD by tuning the precursor 
chemistry. 

9:40am  TF+MS+PS-WeM6  Native Oxide Diffusion and Removal 
During the Atomic Layer Deposition of Ta2O5 on InAs(100) Surfaces, 
Alex Henegar, T. Gougousi, University of Maryland, Baltimore County 
The use of high-κ dielectrics on III-V semiconductors in place of Si/SiO2 
structures in metal oxide semiconductor devices has been perpetually 
hindered by poor quality native oxides at the substrate/film interface. A 
promising solution for the removal of these oxides is the atomic layer 
deposition (ALD) growth technique which has shown the ability to remove 
native oxides during deposition without additional processing for certain 
chemistries.1–4 

In this work, Ta2O5 thin films were deposited on InAs(100) by ALD using 
pentakis dimethyl amino tantalum (PDMAT) and H2O to study the effects 
of film deposition on the native oxides. 3 and 7 nm films were grown at 
150-300 °C on InAs substrates covered with native oxides and substrates 
chemically etched in NH4OH. Analysis of the film deposited on native 
oxide covered substrates by x-ray photoelectron spectroscopy (XPS) shows 
arsenic and indium oxides are readily removed during deposition of 3 nm 
Ta2O5 at 250 and 300 °C, temperatures very close to the optimal ALD 
temperature for the specific chemistry. At lower temperatures both oxides 
persist with indium oxides generally being harder to remove. 

Depth profiling by argon-ion sputtering data of 7 nm films shows that 
indium oxides have diffused into the Ta2O5 film. The sharp decrease in 
oxide signal after the first sputter cycle indicates that the majority of the 
indium oxide is located near the surface suggesting the migration of indium 
oxides to the film surface during deposition. Arsenic oxides, however, are 
detected in smaller amounts and generally speaking remain at the interface. 
For depositions on etched InAs no arsenic oxides were detected but a small 
amount of indium oxides remain even at the optimal deposition 
temperatures. Films grown on etched substrates always contain less indium 
and arsenic oxides than their equivalents deposited on native oxide surfaces. 
Mixing of indium oxide in the films may have a significant negative effect 
on their insulating properties negating any gain from a sharper interface. 
1 P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. 
Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, and J. Bude, Appl. Phys. 
Lett. 83, 180 (2003). 
2 M.M. Frank, G.D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y.J. 
Chabal, J. Grazul, and D.A. Muller, Appl. Phys. Lett. 86, 152904 (2005). 
3 M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee, P. Chang, J. Kwo, T.B. 
Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005). 
4 C.-H. Chang, Y.-K. Chiou, Y.-C. Chang, K.-Y. Lee, T.-D. Lin, T.-B. Wu, 
M. Hong, and J. Kwo, Appl. Phys. Lett. 89, 242911 (2006). 

11:00am  TF+MS+PS-WeM10  ALD in High Aspect Ratio Structures 
and Nanoporous Materials, C. Detavernier, Jolien Dendooven, 
University of Ghent, Belgium INVITED 
Atomic layer deposition (ALD) is known to be an excellent technique for 
the deposition of thin films with uniform thickness over micro- and 
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nanoscale 3D structures. The superior conformality of ALD is a direct 
consequence of the self-saturated surface reaction control and makes the 
technique increasingly useful in the rapidly growing field of 
nanotechnology. The successful ALD-based processing of nanostructured 
materials requires however a careful optimization of the growth parameters. 
In this work, we present an extensive study on the conformality of ALD in 
high aspect ratio structures and nanoporous materials.  

A first experimental approach was based on the use of macroscopic, trench-
like structures in combination with low precursor pressures. In this way, the 
transport of the precursor molecules in the test structures was governed by 
molecular flow, as in microscopic trenches under standard ALD conditions. 
This method allowed us to quantify the conformality of the 
trimethylaluminum (TMA)/H2O process as a function of the aspect ratio 
and the TMA exposure time. Our experimental data indicated that the 
sticking probability is a determining factor in the conformality of ALD [1]. 
A better understanding of the effect of this parameter on the conformality 
was obtained via kinetic modeling and Monte Carlo modeling.  

As a second substrate, porous titania thin films with pore sizes in the low 
mesoporous regime (< 10 nm) were considered in order to get insights on 
the minimum pore diameter that can be achieved by ALD. Novel in situ 
characterization techniques were developed to monitor the pore filling by 
ALD. Synchrotron-based x-ray fluorescence and scattering techniques 
provided cycle-per-cycle information on the material uptake and 
densification of the porous film, while ellipsometric porosimetry was used 
to quantify the pore size reduction. This study nicely demonstrated the 
ability of ALD to tune the diameter of nanopores down to the molecular 
level [2].  

Finally, we performed ALD of TiO2 into a 3D ordered silica powder with 
two types of mesopores [3]. By varying the Ti-precursor exposure time, we 
investigated the introduction of TiO2 into the differently sized mesopores. 
A TEM study revealed the diffusion limited nature of the TiO2 ALD 
process, leading to anisotropic penetration profiles in this specific pore 
structure. We observed a systematic deeper penetration of the deposition 
front along the main channels compared to the narrower mesopores. These 
results were corroborated by modeling work.  

[1] J. Dendooven et al., J. Electrochem. Soc. 156, P63, 2009. [2] J. 
Dendooven et al., Chem. Mater. 24, 1992, 2012. [3] S. P. Sree et al., Chem. 
Mater. 24, 2775, 2012.  

11:40am  TF+MS+PS-WeM12  Pyrolysis of Alucone MLD Films to 
Form Electrically Conducting and Nanodomained Al2O3/C Composite 
Films, J.J. Travis, J.W. DuMont, Steven George, University of Colorado, 
Boulder 
Alucone is an aluminum alkoxide polymer grown using molecular layer 
deposition (MLD) techniques with trimethylaluminum and organic diols or 
triols as the reactants. Alucone films can be pyrolyzed under inert 
atmosphere or vacuum to yield electrically conductive Al2O3/C composite 
films. This pyrolysis provides a pathway to deposit ultrathin, conformal and 
conducting Al2O3/C films on high surface area substrates. Our recent results 
have shown that the electrical conductance of the Al2O3/C films is 
dependent upon the amount of carbon in the film. The initial alucone films 
are non-conducting. After pyrolysis to 850°C, alucone films grown using 
glycerol, with three carbons, or hydroquinone, with six carbons, display 
high electrical conductivity of ~1-3 S/cm. In contrast, pyrolyzed alucone 
films grown using ethylene glycol, with only two carbons, remain non-
conducting. In situ transmission Fourier transform infrared (FTIR) 
spectroscopy was used to monitor the pyrolysis of the alucone films. The C-
H, C-O and C-C vibrational features were lost from the alucone films 
between 300-450°C. The vibrational spectra also showed prominent 
carboxylate features at 400-450°C. Carboxylate features are consistent with 
COO- – Al3+ complexes at the interfaces between the Al2O3 and carbon 
regions of the composite. High resolution transmission electron microscopy 
(HRTEM) images are consistent with a highly interfacial nanodomained 
Al2O3/C composite. These Al2O3/C composite films may provide electrical 
conductivity and oxidation resistance during electrochemical processes on 
metal and carbon electrodes. 

12:00pm  TF+MS+PS-WeM13  Atomic Layer Deposition of Metal 
Oxides on Ultra-High Aspect Ratio, Vertically Aligned Carbon 
Nanotube Arrays, Kelly Stano, M. Carroll, R.P. Padbury, J.S. Jur, P. 
Bradford, North Carolina State University 
Atomic layer deposition (ALD) is commonly used to coat high aspect ratio 
structures, including vertically aligned carbon nanotube arrays (VACNTs). 
Previous studies, however, have demonstrated precursor diffusion depths of 
only 60 µm for long exposure times, leading to a “canopy effect” where 
preferential coating takes place at the top of arrays. In this research we 
report the first example of conformal Al2O3 ALD on 1.5 mm tall VACNTs 
with uniform coating distribution from CNT base to tip. Large-scale CNT 
arrays with free volume aspect ratios ~15,000 were able to be uniformly 

coated by manipulating sample orientation and mounting techniques, as 
confirmed by cross-sectional energy dispersive x-ray spectroscopy. 
Conformal coating was achieved through modification of CNT surface 
chemistry via vapor phase techniques including pyrolytic carbon deposition 
and atmospheric pressure oxygen plasma functionalization. 
Thermogravimetric analysis revealed that arrays which were functionalized 
prior to ALD coating were more stable to thermal degradation compared to 
untreated, ALD coated arrays. Interestingly, CNTs could be easily removed 
during thermal oxidation to yield arrays of continuous, high surface area, 
vertically aligned Al2O3 nanotubes. Additionally, functionalized and ALD 
coated arrays exhibited compressive moduli two times greater than pristine 
arrays coated for the same number of cycles. Al2O3 coated arrays exhibited 
hydrophilic wetting behavior as well as foam-like recovery following 
compressive strain. These processing techniques have been successfully 
applied to other ALD precursors to yield CNT arrays uniformly coated with 
ZnO and TiO2 as well.  
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