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2:20pm  TF+EN+PS-TuA1  Li-Based ALD Solid Electrolytes for 
Beyond-Li-Ion Batteries, Alexander Kozen*, A.J. Pearse, M.A. Schroeder, 
C. Liu, M. Noked, C.F. Lin, G.W. Rubloff, University of Maryland, College 
Park 
Solid Li-based inorganic electrolytes offer profound advantages for energy 
storage in 3-D solid state batteries: (1) enhanced safety, since they are not 
flammable like organic liquid electrolytes; and (2) high power and energy 
density since the solid electrolyte can support interdigitated nanostructured 
electrodes, avoiding binders, separators, and much larger spacing (tens of 
mm’s) between fully separated electrodes. The quality of thin solid 
electrolytes – even in planar form – is currently a major obstacle to solid 
state batteries[1] restricting electrolyte thickness to >100 nm to control 
electronic leakage, consequently slowing ion transport across the electrolyte 
and impeding interdigitated 3-D nanostructure designs that offer high power 
and energy. Furthermore, the ion-conducting, electron-insulating properties 
of solid electrolytes are promising for their use as passivation or protective 
layers on metal anodes (Li, Na, Mg) and on cathodes in proposed “beyond-
Li-ion” battery configurations such as Li-O2 and Li-S. 

Atomic layer deposition (ALD) is well suited to the challenge of solid 
electrolytes, providing ultrathin, high quality films with exceptional 3-D 
conformality on the nanoscale. We have developed ALD processes for 
Li2O, Li3PO4, and LiPON from LiOtBu, H2O, and N2, exploiting 
spectroscopic ellipsometry, downstream mass spectrometry, and XPS 
surface analysis, all in-situ. Post-ALD XPS reveals for the first time carbon-
free electrolytes and their intrinsic surface chemistry. E.g., ALD Li2O 
grown at 250C is reversibly transformed to LiOH upon exposure to H2O, 
but transforms back upon annealing. LiOH is completely and irreversibly 
converted to Li2CO3 by CO2 exposure. These kinds of observations are 
essential to developing process sequences for fabricating 3-D solid 
batteries. 

We then demonstrate the impact of this solid electrolyte synthesis in several 
examples. For solid state batteries, we employ the electrolytes in planar and 
nanostructured battery configurations to determine their Li diffusivity and 
electrochemical performance. For beyond-Li-ion configurations with 
organic electrolytes, we show the use of ALD Li2O at controlled mass 
loading in high aspect ratio Li-O2 cathodes to elucidate the Li-O2 charging 
chemistry, and we demonstrate the use of the ALD solid electrolytes in 
passivating Li anodes in Li-S batteries.  

[1] D. Ruzmetov, V. P. Oleshko, P. M. Haney, H. J. Lezec, K. Karki, K. H. 
Baloch, A. K. Agrawal, A. V. Davydov, S. Krylyuk, Y. Liu, J. Huang, M. 
Tanase, J. Cumings, and A. A. Talin, “Electrolyte Stability Determines 
Scaling Limits for Solid-State 3D Li Ion Batteries,” Nano Lett, vol. 12, no. 
1, pp. 505–511, Jan. 2012. 

2:40pm  TF+EN+PS-TuA2  Engineering Lithium-Containing Ionic 
Conductive Thin Films by Atomic Layer Deposition for Lithium-ion 
Battery Applications, Jea Cho, T. Seegmiller, J. Lau, L. Smith, J. Hur, B. 
Dunn, J.P. Chang, University of California at Los Angeles 
Lithium (Li)-ion batteries have drawn much attention for their outstanding 
performance in portable electronics applications. These batteries have the 
potential to function as miniaturized power sources for 
microelectromechanical (MEMS) devices through the fabrication of 3-
dimensional configurations. To fabricate a fully functional 3D Li-ion 
microbattery, however, an ultra-thin and highly conformal electrolyte layer 
is required to coat the 3D electrodes. The solid oxide Li-ion conductor, 
lithium aluminosilicate (LixAlySizO, LASO), synthesized by atomic layer 
deposition (ALD) is a promising electrolyte material for 3D battery 
applications owing its adequate ionic conductivity as well as improved 
electrode stability.  

The self-limiting characteristic of ALD allows for precise control of 
thickness and composition of complex oxides and results in a highly 
conformal and pinhole-free coating even on highly complex structures such 
as high aspect ratio 3D electrodes. The metal precursors, lithium t-butoxide 
(LTB), trimethylaluminum (TMA), tris(tert-butoxy)silanol (TTBS), and 
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tetraethylorthosilicate (TEOS) were used to form LixAlySizO via ALD. In-
situ FTIR was implemented to study the incubation time and growth 
mechanisms for each oxide deposited on the other to improve the 
controllability of the films. In-situ FTIR studies revealed that the growth 
mechanism of silicon oxide is strongly affected by the underlying oxide 
layer, exhibiting different surface reaction mechanisms during the 
incubation stage.  

Li-ion conductivities and the activation energy for conduction of as-
deposited LASO/LAO/LSO films were determined for different lithium 
contents and film thickness. The LASO ALD coating on 3D carbon array 
posts were confirmed to be conformal and uniform using transmission 
electron microscopy (TEM) imaging. A Li-ion half-cell consisting of LASO 
coated on 3D carbon array electrode showed reversible electrochemical 
behavior. Lithiation cycling tests of thin LASO/LAO/LSO films were found 
to be functions of both composition and thickness. The reversibility and 
kinetics of insertion as well as the effect on the cycling stability from the 
direct deposition of LASO/LAO/LSO on potential anode materials, SiNWs 
were also investigated using in-situTEM observations during lithiation. 

3:00pm  TF+EN+PS-TuA3  Applications of ALD for Li ion Batteries 
and Low Temperature Fuel Cells, Xueliang (Andy) Sun, University of 
Western Ontario INVITED 
Atomic layer deposition (ALD) is a novel and unique coating technique 
with many applications in energy storage and conversion [1]. In this talk, I 
will present our recent work on exploring the applications of atomic layer 
deposition (ALD) in both fuel cells and Li ion batteries [2-7].  

In the first part, we will report of use of ALD for Pt catalysts used in low 
temperature fuel cells. In particular, atomic Pt or clusters prepared by ALD 
show ten times higher methanol oxidation properties compared with ETK 
commercially-used catalysts [2].  

In the second part, we will focus on employing ALD as a surface-
modification method to enhance the performance of LIBs. Different 
materials for surface-modification (such as Al2O3, ZrO2, TiO2 and AlPO4) 
[3,4] were first developed by ALD. Then systemic studies were carried out 
by using those materials to modify the anode (Li4Ti5O12, SnO2) [5] and the 
cathode (commercial LiCoO2, NMC) [6]. The effects of different coating 
materials on the LIB performance of the anode and cathode were 
investigated in details. In addition, the potential application of ALD as a 
powerful technique for preparing solid-state electrolyte will be 
demonstrated [7]. We will discuss further development of ALD for fuel 
cells and Li ion batteries. 

Reference:  

[1] X. Meng, X.-Q. Yang, X. Sun. Adv. Mater. 2012, 24, 3589-3615. 

[2] S. Sun , G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, 
X. Meng, D. Geng, M. Banis, R. Li,  

S. Ye, S. Knights, G. Botton, T.-K. Sham, X. Sun, Scientific Reports 3 
(2013) 1775. 

[3] J. Liu, X. Meng, Y. Hu, D. Geng, M.N. Banis, M. Cai, R. Li, X. Sun. 
Carbon 2013, 52, 74-82. 

[4] J. Liu, Y. Tang, B. Xiao, T.K. Sham, R. Li, X. Sun. RSC Adv. 2013, 3, 
4492-4495. 

[5] X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. Banis, Y. Li, R. Li, X. 
Sun, M. Cai, M. Verbrugge, Adv.  

Funct. Mater. 22 (2012) 1647-1654. 

[6] X. Li, J. Liu, M. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Energy 
Environ. Sci. 7 (2) (2014) 768-778 

[7]. J. Liu, M. Banis, X. Li, A. Lushington, M. Cai, R. Li, T.-K. Sham, X. 
Sun, J. Phys. Chem. C 117(2013)  

20260-20267 

4:20pm  TF+EN+PS-TuA7  ALD for a High Performance “All-in-One” 
Nanopore Battery, Chanyuan Liu, X. Chen, E. Gillette, A.J. Pearse, A.C. 
Kozen, M.A. Schroeder, K. Gregorczyk, S.B. Lee, G.W. Rubloff, University 
of Maryland, College Park 
A self-aligned nanostructured battery fully confined within a single 
nanopore presents a powerful platform to determine the performance and 
cyclability limits of nanostructured storage devices. We have created and 
evaluated such structures, comprised of nanotubular electrodes and 
electrolyte confined within anodic aluminium oxide (AAO) nanopores as 
“all-in-one” nanopore batteries. The nanoelectrodes include metal (Ru or Pt) 
nanotube current collectors with crystalline V2O5 storage material on top of 
them, penetrating part way into the AAO nanopores to form a symmetric 
full storage cell, with anode and cathode separated by an electrolyte region.  
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The unprecedented thickness and conformality control of atomic layer 
deposition (ALD) and the highly self-aligned nanoporous structure of 
anodic aluminum oxide (AAO) are essential to enable fabrication of 
precision, self-aligned, regular nanopore batteries, which display 
exceptional power-energy performance and cyclability when tested as 
massively parallel devices (~2billion/cm2), each with ~1μm3 volume (~1fL).  

To realize these “all-in-one” nanopore batteries, we focused on the precise 
control of Ru and Pt thin film conformality inside very high aspect ratio 
(300:1) AAO nanopores by thermal ALD process. 7.5nm thick Ru and Pt 
are optimized to be 15µm deep at both sides of 50µm long AAO pores in 
order to provide fast electron transport to overlying V2O5 at both anode and 
cathode sides, while keeping them spatially and electrically isolated. Active 
storage layers of 23nm thick crystalline V2O5 were deposited inside the 
metal nanotubes to form core-shell nanotubular structures at low 
temperature (170°C) using O3 as the oxidant, with <001> direction 
perpendicular to tube surface and RMS roughness ~4nm. Then the V2O5 

was prelithiated at one end to serve as anode while pristine V2O5 without Li 
at the other end served as cathode, enabling the battery to be cycled between 
0.2V and 1.8V and to achieve full theoretical Faradaic capacity of the V2O5. 
Capacity retention of this full cell at high power (relative to 1C rates) is 
95% at 5C and 46% at 150C rates (i.e., 24 sec charge/discharge time). At 
5C rate (12 min charge-discharge cycle), 81.3% capacity remains after 1000 
cycles. These performance metrics are exceptional, exceeding those of most 
prototypes reported in the literature. These results demonstrate the promise 
of ultrasmall, self-aligned/regular, densely packed nanobattery structures as 
a building block for high performance energy storage systems. 

4:40pm  TF+EN+PS-TuA8  Pseudocapacitive Manganese Oxide Grown 
by Atomic Layer Deposition, Matthias Young, C.D. Hare, A.S. Cavanagh, 
C.B. Musgrave, S.M. George, University of Colorado, Boulder 
Pseudocapacitive supercapacitors are a class of energy storage materials 
that are midway between lithium ion batteries and capacitors in terms of 
both power and energy densities. Manganese oxide is a well-known 
pseudocapacitive material with particular appeal due to its earth abundance 
and low cost. In previous work, we have demonstrated that MnO ALD 
produced using bis(ethylcyclopentadienyl)manganese (Mn(CpEt)2) and 
water can be electrochemically oxidized to produce pseudocapacitive MnO2 
in aqueous electrolytes. However, recent results have shown that the 
electrochemical oxidation of MnO ALD films results in partial dissolution 
and delamination. To avoid these problems, we have worked to grow 
pseudocapacitive MnO2 by ALD that requires no post-processing. We have 
grown manganese oxide ALD films using ozone as the coreactant with 
Mn(CpEt)2. We have also used intermediate ozone doses during Mn(CpEt)2 
and water exposures during ALD growth. The use of ozone results in more 
oxidized manganese oxide films. Another issue is that the alpha-MnO2 
crystal structure of MnO2 which exhibits high pseudocapacitance contains 
open channels that are only stable in the presence of cations such as Na+ or 
K+. Consequently, directing the ALD growth toward alpha-MnO2 
pseudocapacitive crystal structures requires the incorporation of an alkali 
metal into the MnO2 ALD films. 

5:00pm  TF+EN+PS-TuA9  Excellent Chemical Passivation of p+ and n+ 
Surfaces of Silicon Solar Cells by Atomic Layer Deposition of Al2O3 
and SiO2/Al2O3 Stacks, Bas van de Loo, H.C.M. Knoops, Eindhoven 
University of Technology, Netherlands, G. Dingemans, ASM, Netherlands, 
I.G. Romijn, ECN Solar Energy, Netherlands, W.M.M. Kessels, Eindhoven 
University of Technology, Netherlands 
Thin films of Al2O3 provide excellent passivation of heavily p-doped (p+) 
silicon surfaces and are therefore often applied in silicon solar cells to reach 
high efficiencies. The high level of passivation by Al2O3 can be attributed to 
its low interface defect density and high negative fixed charge density Qf. 
However, the negative fixed charge density of Al2O3 can be detrimental for 
the passivation of n+ surfaces [1]. Furthermore, in advanced cell 
architectures such as interdigitated back-contact (IBC) solar cells, both n+ 

and p+ surfaces are adjacent and are preferably passivated simultaneously. 
To this end, we systematically study the surface passivation by SiO2/Al2O3 
stacks prepared by atomic layer deposition (ALD), which exhibit excellent 
chemical passivation while the effective fixed charge density can be tuned 
to zero by carefully tuning the SiO2 thickness.  

Al2O3 and SiO2/Al2O3 film stacks with varying ALD SiO2 thickness (0-12 
nm) were prepared by plasma-enhanced ALD at 200°C, with 
H2Si(N(C2H5)2)2 and Al(CH3)3 as metal-organic precursors and O2 plasma as 
oxidant. Moreover, a SiO2 ALD process using ozone was developed as this 
oxidant is more suitable for batch ALD. The relevant process parameters for 
surface passivation, such as ozone exposure time, were identified. The 
passivation of n+ and p+ doped surfaces was studied in detail, and results 
were compared with industrial passivation schemes, including PE-CVD 
SiNx and similar SiO2/Al2O3 stacks from a high-volume manufacturing 
ALD batch reactor.  

A superior level of passivation of n+ surfaces (Rsheet = 100 Ω/sq) was 
obtained by SiO2/Al2O3 stacks as compared to single layer Al2O3, 
significantly reducing the recombination current density (J0) from (81±10) 
to (50±3) fA/cm2. On p+ surfaces (Rsheet= 60 Ohm/sq), J0increases with 
increasing SiO2 thickness. The results can be explained by an excellent level 
of chemical passivation, combined with a strongly reduced negative fixed 
charge density when increasing the SiO2 thickness. To fully exploit the 
virtues of ALD, the concept of using SiO2/Al2O3 stacks for the passivation 
of both the n+and p+doped surfaces in a single deposition run was 
demonstrated on (completed) n-type bifacial solar cells, reaching 
conversion efficiencies >19%. The results are promising for IBC solar cells, 
where n+ and p+surfaces are adjacent and care must be to achieve a low 
surface recombination, high shunt resistance and industrial feasibility. 

[1] B. Hoex et al., Phys. status solidi - Rapid Res. Lett., vol. 6, no. 1, pp. 4–
6, (2012).  

5:20pm  TF+EN+PS-TuA10  Opportunities for Transparent 
Conductive Oxides Prepared by ALD for Silicon Heterojunction Solar 
Cells, Bart Macco, S. Smit, Y. Wu, D. Vanhemel, W.M.M. Kessels, 
Eindhoven University of Technology, Netherlands 
In silicon heterojunction (SHJ) solar cells, transparent conductive oxides 
(TCOs) serve as the top window layer which provides lateral charge 
transport to the metal contacts whilst maintaining a high optical 
transparency. Commonly-employed TCO materials include Sn-doped 
indium oxide (In2O3:Sn), Al-doped zinc oxide (ZnO:Al) and more recently 
also H-doped indium oxide (In2O3:H)1, which are typically deposited by 
sputtering. In this work, atomic layer deposition (ALD) is explored as an 
alternative deposition technique for the abovementioned materials. Three 
salient features of the ALD process will be addressed. Firstly, the 
applicability of these ALD TCOs is evaluated in terms of their 
optoelectronic performance. It is shown that through controlled ALD 
doping cycles the carrier density can be accurately tuned and a low 
resistivity (<0.5 mΩcm) required for SHJ solar cells can be obtained. 
Secondly, it is shown that a thermal ALD process does not induce damage 
to the underlying a-Si:H passivation layers found in a SHJ solar cell. This is 
a distinct advantage over the conventional sputtering technique, in which 
plasma-related (UV, ions) damage is known to reduce the passivation level 
of the a-Si:H layers.2 This perk of ALD is put to use in bilayers of ALD 
ZnO:Al/sputtered In2O3:Sn, where a thin ALD TCO layer (<15 nm) can 
very effectively protect the a-Si:H layers from sputter damage. TEM and in-
situ spectroscopic ellipsometry measurements show that the protective 
properties are strongly correlated with the TCO surface coverage, as the 
initial ALD TCO growth on the a-Si:H layer suffers from a nucleation delay 
and associated island-like growth.3 Finally, the accurate control over the 
doping (profile) of the TCO offered by ALD opens up ways to optimize the 
band alignment of a SHJ solar cell. At the interface of the TCO and the p-
type a-Si:H, a high doping of the TCO is unfavorable for the band 
alignment and results in a reduced fill-factor.3 On the other hand, the 
conductivity requirement of the TCO sets a lower bound to the doping level. 
In this respect, graded doping of the TCO by ALD allows for effective 
decoupling of the conductivity requirements of the TCO with the 
optimization of the interface contact formation. 
1 Barraud et al., Solar Energy Materials and Solar Cells, 115, 151–156 
(2013) 
2 Demaurex et al., Applied Physics Letters, 101, 171604 (2012) 
3 Macco et al., Applied Physics Letters (submitted) 

5:40pm  TF+EN+PS-TuA11  Study of the Surface Passivation 
Mechanism of c-Si by Al2O3 using In Situ infrared spectroscopy, R.P. 
Chaukulkar, Colorado School of Mines, W. Nemeth, A. Dameron, P. 
Stradins, National Renewable Energy Laboratory, Sumit Agarwal, 
Colorado School of Mines 
The quality of Si surface passivation plays an integral role in the 
performance of c-Si-based solar cells. Recently, Al2O3 films grown by 
atomic layer deposition (ALD) have been shown to be an effective 
passivant for c-Si surfaces with surface recombination velocities (Seff) that 
are <5 cm/s. The chemical passivation of the c-Si surface via Al2O3 is 
achieved by a reduction in the defect density at the interface, while field-
effect passivation is attributed to the fixed negative charge associated with 
the Al2O3 films. However, a post-deposition annealing step is required to 
achieve this high level of passivation. We have investigated the mechanism 
of chemical passivation during the annealing step using in situ attenuated 
total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. 
Specifically, we have studied the role of residual H- and O-atom migration 
from the ALD Al2O3 films to the c-Si/Al2O3 interface. Using Al(CH3)3 and 
O3 as the ALD precursors, Al2O3 films were deposited directly onto high-
lifetime float-zone c-Si internal reflection crystals (IRCs) followed by 
thermal annealing at 400 °C in different atmospheres. Specifically, we have 
used D-terminated c-Si IRCs to differentiate the residual H atoms that may 
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migrate from ALD Al2O3 films versus the residual D atoms present at the 
Al2O3/c-Si interface after ALD. Within the sensitivity of the ATR-FTIR 
spectroscopy setup of ~1012 cm-2 for Si-H bonds, we do not detect any 
migration of H from Al2O3 to the c-Si interface. Therefore, we conclude that 
the migration of O, and the subsequent restructuring of the interface during 
the annealing step, primarily contributes towards the chemical passivation 
of the Al2O3/c-Si interface. The ATR-FTIR spectroscopy measurements are 
complemented by the minority carrier lifetime, interface defect density, and 
built-in charge density measurements on SiO2/Al2O3 stacks on c-Si, which 
enable us to isolate chemical passivation from field-effect passivation. The 
stacks were annealed in different atmospheres to better understand the role 
of O versus H atoms in the chemical passivation mechanism. 

We gratefully acknowledge the support from the NCPV Fellowship 
Program and U.S. Department of Energy, Office of Energy Efficiency and 
Renewable Energy, under Contract No. DE-AC36-08-GO28308 with the 
National Renewable Energy Laboratory.  

6:00pm  TF+EN+PS-TuA12  Low Temperature Plasma-assisted Atomic 
Layer Deposition of TiO2 Blocking Layers for Flexible Hybrid 
Mesoscopic Solar Cells, V. Zardetto, Eindhoven University of Technology, 
Netherlands, F. di Giacomo, T.M. Brown, A. di Carlo, A. D'Epifanio, S. 
Licoccia, University of Rome "Tor Vergata", Italy, W.M.M. Kessels, 
Mariadriana Creatore, Eindhoven University of Technology, Netherlands 
Atomic Layer Deposition (ALD) is widely acknowledged in the field of c-
Si and thin film PV technologies, for the fabrication of ultra-thin, uniform 
and conformal layers.[1] Thermal ALD has been applied also in the case of 
more challenging interfaces, e.g. dye-sensitized solar cells (DSCs) and the 
novel hybrid organo-lead-halide perovskite solar cells. Particularly, TiO2 
blocking layers have been developed on glass/TCO substrates with the aim 
of decreasing the charge recombination processes at the interface between 
the ITO and the mediator. Recently, we have explored the benefit of 
plasma-assisted ALD (PA-ALD) in terms of low temperature processing 
applied to flexible DSCs for the development of highly transparent Pt 
counterelectrodes on ITO/PEN. [2] In this work, we further explore PA-
ALD for the deposition of ultra-thin, highly compact TiO2 blocking layers 
on ITO-polymer substrates for DSCs and perovskite solar cells. The layers 
were prepared in a remote plasma reactor (FlexALTM) at 150 °C using an 
heteroleptic alkylamido precursor Ti(CpMe)(NMe2)3 alternated with an O2 
plasma. For DSCs with an iodide-based electrolyte, the introduction of the 
blocking layer is essential at low light intensity, in order to increase the 
indoor performance of the cell. It is found that the presence of ultra-thin (6 
nm) TiO2 layers slightly affects the performance of the cell under sun 
simulator, whereas it definitely improves the generated power (+40%) 
under low level illumination (300 lux). The blocking behaviour of the PA-
ALD deposited TiO2 towards the tri-iodide reduction has been investigated 
by electrochemical impedance spectroscopy and Tafel plot analysis. We 
pinpointed that an increase in the TiO2 layer thickness above 6 nm leads to a 
decrease of the recombination processes at the TCO/electrolyte interface, as 
well as to a dramatic reduction of the electron collection at the TCO, 
accompanied by a decrease in cell performance. For mesostructured 
perovskite (CH3NH3PbI2Cl- based) solar cells, the application of a TiO2 
blocking layer is essential for the performance of the device, due the higher 
current exchange at the interface TCO-hole transport material, i.e. Spiro-
OMeTAD, typically used in this architecture. The application of a 11 nm- 
thick TiO2 layer resulted in an efficiency of 7.4%. In conclusion, ALD is a 
valid approach for controlling electrochemical charge-transfer processes in 
mesoscopic solar cells. 

[1] J.A. van Delft, D. Garcia-Alonso , W. M. M. Kessels, Semicond. Sci. 
Technol., 27, 74002 (2012)  

[2] D. Garcia-Alonso, V. Zardetto, A.J.M. Mackus, F. De Rossi, M.A. 
Verheijen, T.M. Brown, W.M.M. Kessels, M. Creatore, Adv. En. Mater. 4, 
1300831 (2014) 
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