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2:20pm  TF+EM+EN-WeA1  Enhanced Light Trapping by Glancing 
Angle Deposited Semiconducting and Metallic Nanostructure Arrays, 
Hilal Cansizoglu, R. Abdulrahman, M.F. Cansizoglu, University of 
Arkansas at Little Rock, M. Finckenor, NASA Marshall Space Flight 
Center, T. Karabacak, University of Arkansas at Little Rock 
Management of light trapping in nano materials has recently got attention 
owing to altering optical properties of materials commonly used in potential 
applications such as photovoltaics and photonics. Trapping the light inside 
the semiconducting nanostructure coating can increase optical absorption 
capacity of the material dramatically. Meanwhile, metallic nanostructures 
can serve as individual back reflectors if the light is achieved to be trapped 
among metallic nanostructures, which results in enhanced optical absorption 
of the possible surrounding absorber material around metallic structures. In 
this study, we examine light trapping in arrays of zig-zags, springs, screws, 
tilted rods, and tapered vertical rods of indium sulfide (In2S3) and aluminum 
(Al) as the model semiconducting and metallic materials, respectively. 
Nanostructures of different shapes were produced by glancing angle 
deposition (GLAD) technique. We investigated the effect of size and shape 
of the arrays on light trapping properties using ultraviolet–visible-near-
infrared (UV-VIS-NIR) spectroscopy and finite difference time domain 
(FDTD) simulations. Optical characterization results show that light 
trapping by GLAD nanostructures can strongly depend on their shapes. 
Under normal incidence of light, 3D geometries of semiconducting 
nanostructures such as springs, screws, and tapered vertical rods can 
provide an enhanced optical absorption compared to zigzags, and tilted 
rods. In addition, total reflectance measurements reveal that reflectance is 
inversely proportional to metallic nanorod length in the wavelength range of 
200-1800 nm. Meanwhile, FDTD optical modelling indicates an enhanced 
diffuse light scattering and light trapping through uniform distribution of 
diffracted light within the 3D In2S3 nanostructure geometries such as 
springs, screws and vertical rods. On the other hand, zigzags and tilted rods 
show light absorption at relatively low level similar to the experimental 
results. In addition, simulations reveal that average reflectance of Al 
nanorods can drop down to as low as ~50%, which is significantly lower 
than the ~90% reflectance of conventional flat Al film at similar 
wavelengths. Our results demonstrate that GLAD nanostructures can 
provide efficient light trapping through the control of their shapes and size. 

2:40pm  TF+EM+EN-WeA2  Enhanced Photoresponsivity of 
Conformal TiO2/Ag Nanorod Arrays Fabricated via (Successive) 
Glancing Angle and Atomic Layer Deposition, Ali Haider, N. Biyikli, 
A.K. Okyay, Bilkent University, Turkey, T. Karabacak, H. Cansizoglu, 
University of Arkansas at Little Rock, B. Teckcan, Bilkent University, 
Turkey, M.F. Cansizoglu, University of Arkansas at Little Rock 
Improved charge carrier collection and optical absorption are two main 
techniques to enhance the photocurrent of a nanostructured photodetector. 
In a nanostructured photodiode, longer carrier life time and shorter transit 
time of the photo-generated carriers provides efficient charge carrier 
collection while the nanostructured device architecture contributes towards 
trapping the light by diffuse light scattering and enhancing optical 
absorption. However, efficient charge carrier collection is limited by the 
random and non-uniform nano-network. For nanostructured Schottky 
photodetectors, uniform nanostructured geometries with larger aspect ratio 
can enhance the interface of the Schottky junction which in turn decreases 
the transit time of generated carriers. In addition, most of the 
nanofabrication methods that can produce uniform nanostructure geometries 
are limited to certain materials. Therefore, it is an overwhelming demand to 
develop innovative low-cost nanostructured photodetector fabrication 
methodologies which enables the use of a variety of semiconductor alloy 
families with uniform and optimized geometries for improving 
photoresponsivity performance. In this work, we demonstrate a proof-of-
concept nanostructured Schottky photodiode fabrication method combining 
glancing angle deposition (GLAD) and atomic layer deposition (ALD) to 
fabricate metal-semiconductor radial junction nanorod arrays, which offers 
significantly enhanced photoresponse compared to conventional planar 
counterpart. Firstly, silver (Ag) nanorod (NR) arrays were deposited on Ag 
thin film/Si templates by utilizing glancing angle deposition (GLAD) 

technique. A conformal and thin titanium dioxide (TiO2) coating was 
deposited on silver nanorods via ALD. ALD emerge as highly attractive 
deposition technique for coating of nanorods due to its remarkable 
conformality and uniformity on the densely packed NR structures. 
Moreover, ALD also facilitates the ultra-precise control of deposited film 
thickness in the sub-nm scale. Following the growth of TiO2 on Ag NRs, 
aluminum (Al) metallic top contacts were deposited by thermal evaporation 
to complete the fabrication of NR-based Schottky photodiodes. Due to the 
improved charge carrier collection and optical absorption, the resulting 
nanostructured detector exhibits a more-than two orders of magnitude 
photoresponsivity enhancement factor (3.8x102) under 3V reverse bias 
when compared to the corresponding thin film counterpart device with the 
same TiO2 thickness. Our preliminary structural, optical, electrical, and 
photoresponse characterization results are presented.  

3:00pm  TF+EM+EN-WeA3  Nanostructured Photonic Materials for 
Light-Trapping and Photon Management in Solar Energy Conversion, 
Koray Aydin, Northwestern University INVITED 
Nanophotonics, the emerging field of photon-material interactions at the 
nanoscale, poses many challenges and opportunities for researchers both in 
the basic and applied sciences. In this talk, I will describe our efforts in 
designing, realizing and characterizing nanostructured photonic materials 
including metals, transparent conductive oxides and inorganic 
semiconductors. By shaping materials at the nanoscale, one can drastically 
increase absorption in and/or scattering from nanostructures that could 
provide significant performance enhancements in solar energy conversion 
processes including photovoltaics and photocatalysis. First, I will discuss 
our research efforts on realizing broadband plasmonics absorbers enabled 
by nanophotonic light-trapping approaches in metal-insulator-metal 
resonators. By using reflective metals and transparent dielectrics, we have 
achieved significant absorption enhancement in the metallic parts opening 
routes for spectrally and spatially selective light-absorbing devices that 
could find use in thermophotovoltaics and hot-electron collection devices. 
Then, I will describe light-trapping in nanostructured inorganic silicon 
ultrathin films which results in drastic absorption enhancement over the 
entire solar spectrum and over the wide range of incident angles. This 
approach does not involve any plasmonic components and based solely on 
localized and delocalized resonances in semiconductor nanostructures. This 
novel resonant light absorption phenomenon in semiconductors could find 
use in photocatalytic and photovoltaic applications of inorganic 
semiconductors. Finally, I will talk about our results on nanostructured 
transparent conductive oxide contacts, which is capable of light trapping 
over broad range of wavelengths. Nanostructured TCO contacts could 
benefit both organic and inorganic photovoltaic materials, offering 
significant absorption and short circuit enhancements. 

4:20pm  TF+EM+EN-WeA7  Porous Solid Phase Microextraction 
(SPME) Fibers by Oblique Angle Deposition, Anubhav Diwan, B. Singh, 
Brigham Young University, M. Kaykhaii, Sistan & Balouchestan 
University, Iran (Islamic Republic of), B. Paul, P. Nesterenko, University of 
Tasmania, Australia, M.R. Linford, Brigham Young University 
Solid phase microextraction (SPME) is a solvent-free technique used for 
extracting organic compounds from matrices such as air or wastewater. It 
involves a fiber coated with a liquid or solid stationary phase that extracts 
target compounds directly from a solution or from the head space above a 
solution or material. Solid stationary phases provide faster extraction than 
liquid phases, but exhibit lower capacities. Porous solid phases have been 
able to overcome these issues by providing large surface areas for analyte 
adsorption. Commercial SPME fibers are rather expensive, swell in many 
solvents, and often extract limited numbers of compounds (show limited 
selectivity). Herein, we discuss the preparation of porous SPME fibers by 
oblique angle deposition (OAD) of sputtered silicon or other materials onto 
a fiber. OAD involves deposition of materials onto substrates placed at 
steep angles with respect to the direction of the incoming species, creating 
porous structures. The resulting nanoporous coatings can be modified with 
different functional groups to enhance selectivity of the phase towards 
target compounds. If normalized for thickness, our fibers show ca. three 
times the capacity of a commercial, 7 μm PDMS fiber. To confirm their 
morphologies, new OAD-based fibers have been characterized by scanning 
electron microscopy (SEM). Various silane coatings can be applied to our 
fibers, which will offer a range of selectivities. These coatings, e.g., a C18 
silane, have been characterized on model planar substrates by X-ray 
photoelectron spectroscopy (XPS) and contact angle goniometry (wetting). 
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4:40pm  TF+EM+EN-WeA8  Chiral Patchy Particle Arrays: A Simple 
Fabrication Method to Achieve Plasmonic Circular Dichroism in the 
Visible Region, George Larsen, Y. He, W. Ingram, Y.P. Zhao, University 
of Georgia, Athens 
An object is said to be “chiral” if it cannot be made superimposable upon its 
mirror image solely by rotations and translations. That is, chiral objects do 
not exhibit reflective symmetry. By combining self-assembled colloid 
monolayers and glancing angle deposition (GLAD), we can create chiral 
patchy particle thin films that exhibit plasmonic activity in the visible 
region. Due to their chirality, these patchy particle films exhibit circular 
dichroism, i.e., they absorb right- and left-circular polarized light to 
different degrees. Interestingly, we find that the GLAD method relaxes 
requirements on the template quality, allowing for the production strongly 
chiral films from polycrystalline colloidal monolayers with randomly 
oriented domains. It is determined that the rotation direction during GLAD 
breaks the racemic symmetry of the templates by creating a chiral 
distribution of material which enhances the chirality of one set of 
enantiomers relative to the other. Microscopic analysis and geometric 
chirality calculations confirm that the optical chirality of the bulk film 
results from incomplete cancellations of even stronger local chiralities. By 
improving the quality of the colloidal monolayers and intentionally creating 
a chiral material distribution, we seek to use these chiral patchy particle 
arrays as plasmonic biosensors that are sensitive to the handedness of the 
target molecule.  

5:00pm  TF+EM+EN-WeA9  Tunable Three-Dimensional Helically 
Stacked Plasmonic Layers on Nanosphere Monolayers, Yizhuo He*, 
G.K. Larsen, W. Ingram, Y.P. Zhao, University of Georgia, Athens 
Chiral metamaterials are artificial materials designed to interact with left- 
and right-handed circularly polarized light in different ways. Such a unique 
optical property enables applications such as negative refractive index, 
circular polarization, enantiomer sensing, etc. Practical applications usually 
require the fabrication of large-area chiral metamaterials on substrates with 
tunable chiroptical properties, especially in visible to near infrared 
wavelength region. We report a simple and scalable method to fabricate 
three-dimensional chiral metamaterial combining glancing angle deposition 
and self-assembled colloidal monolayers. Ag and SiO2 are deposited 
alternatingly on colloidal monolayers. By controlling the azimuthal rotation 
of substrates between depositions, Ag and SiO2 layers can be helically 
stacked in left-handed and right-handed fashions to form continuous 
helices. These helically stacked plasmonic layers (HSPLs) exhibit localized 
surface plasmon resonances (LSPR) and strong chiroptical responses in 
visible to infrared region, which is also confirmed by finite-difference time-
domain simulations. The most important feature of HSPLs is the great 
tunability of chiroptical spectra. By increasing the nanosphere diameter 
from 200 nm to 500 nm, the HSPL structure can be scaled up and thus the 
LSPR peak redshifts from 520 nm to 1000 nm. Since the chiroptical 
response originates from the strong interaction of metal layers with light, 
i.e. LSPR, the chiroptical spectra also redshifts accordingly without a 
significant change in magnitude. With such flexibility in the design, HSPLs 
may act as tunable chiral metamaterials, as well as serve as different 
building blocks for chiral assemblies. 

5:20pm  TF+EM+EN-WeA10  Co-deposition of Mixed-Valent Oxides of 
Molybdenum and Germanium (MoxGeyOz): A Route to Tailored 
Optical Absorption, Neil Murphy, Air Force Research Laboratory, L. Sun, 
General Dynamics Information Technology, J.G. Jones, Air Force Research 
Laboratory, J.T. Grant, General Dynamics Information Technology 
Mixed-valent oxides of molybdenum and germanium were deposited 
simultaneously using reactive magnetron co-deposition within an oxygen-
argon environment. The films’ stoichiometry, optical and physical 
properties were varied through changes in oxygen partial pressure induced 
by systematic variation of the potential applied to the molybdenum cathode. 
The oxygen partial pressure was determined from the drop in pressure as 
measured by a capacitance manometer, assuming constant argon partial 
pressure. To facilitate deposition, a constant power of 100 W DC was 
applied to the germanium cathode, while power was applied to the 
molybdenum target using a modulated pulse power supply. Modulated 
pulse power magnetron sputtering was used due to its ability to generate 
high target power densities, allowing for rapid reduction of oxygen on the 
surface of the “oxygen poisoned” molybdenum cathode, as well as for its 
highly metallic plasma resulting in increased oxygen-gettering capability. 
Changes in the modulated pulse power supply’s capacitor bank charge, 
stepped from settings of 300 to 380 V, resulted in films ranging from 
mixtures of transparent GeO2 (Ge4+) and MoO3 (Mo6+) to the introduction of 
various absorptive ionic species including Mo5+, Mo4+, Ge2+ and Ge0, as 
determined from X-ray photoelectron spectroscopy. The presence of each of 

                                                 
* TFD James Harper Award Finalist 

the aforementioned ions results in characteristic changes in the films’ band 
energies and optical absorption, measured using UV-VIS-NIR optical 
spectroscopy. As deposited MoxGeyOz thin films grown using this method 
have been shown to have band gaps that are able to be tailored between 2.8 
eV and 0.6 eV, spanning useful ranges for devices operating in the visible 
and near-infrared. 

5:40pm  TF+EM+EN-WeA11  Permanent Optical Tape and Solid State 
Data Storage Devices, Hao Wang, R. Gates, N. Madaan, J. Bagley, A. 
Diwan, A. Pearson, S. Jamieson, K. Laughlin, Brigham Young University, 
Y. Liu, Lehigh University, B. Lunt, M. Asplund, Brigham Young University, 
V. Shutthanandan, Pacific Northwest National Laboratory, R.C. Davis, M.R. 
Linford, Brigham Young University 
Recently we have prepared novel write–once–read–many (WORM) optical 
stacks on Mylar for archival data storage in an optical tape format.1 Here, a 
nanoscale, co-sputtered bismuth–tellurium–selenium (BTS) alloy was 
employed as the write layer with carbon protective layers on both the top 
and bottom of the BTS film. We have successfully written information 
(matrix of marks) on the C/BTS/C optical stack using a 532 nm laser. Both 
the optical stack structure (film thickness) and writing conditions (laser 
power and laser spot size) have been optimized. Films were characterized 
by X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight 
secondary ion mass spectrometry, scanning electron microscopy, 
spectroscopic ellipsometry, and atomic force microscopy.2, 3 

We have also recently developed novel WORM solid-state memory 
elements. These consisted of nanoscale, bowtie-like sputtered carbon films 
to which a voltage (ca. 10 V) is applied. These fuses have been successfully 
blown, and the carbon fuse shape, thickness of the carbon layer, and writing 
voltage have been optimized. Other aspects of the device are currently being 
optimized. 

References  

[1] Wang, H.; Lunt, B.M.; Gates, R.J.; Asplund, M.C.; Shutthanandan, V.; 
Davis, R.C.; Linford, M.R. Carbon/ternary alloy/carbon optical stack on 
Mylar as an optical data storage medium to potentially replace magnetic 
tape, ACS Appl. Mater. Interfaces, 2013, 5, 8407-8413. 

[2] Wang, H.; Diwan, A.; Lunt, B.M.; Davis, R.C.; Linford, M.R. XPS and 
SIMS characterization of a BiTeSe write layer for permanent optical tape 
storage, Proceedings of ISOM 2013, ISOM 2013 International Conference, 
Incheon, South Korea, 2013. 

[3] Wang, H.; Lunt, B.M.; Davis, R.C.; Linford, M.R. Simulation of laser 
writing on Bi-Te-Se alloy/carbon/Mylar pemanent optical storage tape, 
ISOM 2013 International Conference, Incheon, South Korea, 2013. 



 3 Author Index 

Authors Index 
Bold page numbers indicate the presenter 

—	A	— 
Abdulrahman, R.: TF+EM+EN-WeA1, 1 
Asplund, M.: TF+EM+EN-WeA11, 2 
Aydin, K.: TF+EM+EN-WeA3, 1 

—	B	— 
Bagley, J.: TF+EM+EN-WeA11, 2 
Biyikli, N.: TF+EM+EN-WeA2, 1 

—	C	— 
Cansizoglu, H.: TF+EM+EN-WeA1, 1; 

TF+EM+EN-WeA2, 1 
Cansizoglu, M.F.: TF+EM+EN-WeA1, 1; 

TF+EM+EN-WeA2, 1 

—	D	— 
Davis, R.C.: TF+EM+EN-WeA11, 2 
Diwan, A.: TF+EM+EN-WeA11, 2; TF+EM+EN-

WeA7, 1 

—	F	— 
Finckenor, M.: TF+EM+EN-WeA1, 1 

—	G	— 
Gates, R.: TF+EM+EN-WeA11, 2 
Grant, J.T.: TF+EM+EN-WeA10, 2 

—	H	— 
Haider, A.: TF+EM+EN-WeA2, 1 
He, Y.: TF+EM+EN-WeA8, 2; TF+EM+EN-

WeA9, 2 

—	I	— 
Ingram, W.: TF+EM+EN-WeA8, 2; TF+EM+EN-

WeA9, 2 

—	J	— 
Jamieson, S.: TF+EM+EN-WeA11, 2 
Jones, J.G.: TF+EM+EN-WeA10, 2 

—	K	— 
Karabacak, T.: TF+EM+EN-WeA1, 1; 

TF+EM+EN-WeA2, 1 
Kaykhaii, M.: TF+EM+EN-WeA7, 1 

—	L	— 
Larsen, G.K.: TF+EM+EN-WeA8, 2; 

TF+EM+EN-WeA9, 2 
Laughlin, K.: TF+EM+EN-WeA11, 2 
Linford, M.R.: TF+EM+EN-WeA11, 2; 

TF+EM+EN-WeA7, 1 
Liu, Y.: TF+EM+EN-WeA11, 2 
Lunt, B.: TF+EM+EN-WeA11, 2 

—	M	— 
Madaan, N.: TF+EM+EN-WeA11, 2 
Murphy, N.R.: TF+EM+EN-WeA10, 2 

—	N	— 
Nesterenko, P.: TF+EM+EN-WeA7, 1 

—	O	— 
Okyay, A.K.: TF+EM+EN-WeA2, 1 

—	P	— 
Paul, B.: TF+EM+EN-WeA7, 1 
Pearson, A.: TF+EM+EN-WeA11, 2 

—	S	— 
Shutthanandan, V.: TF+EM+EN-WeA11, 2 
Singh, B.: TF+EM+EN-WeA7, 1 
Sun, L.: TF+EM+EN-WeA10, 2 

—	T	— 
Teckcan, B.: TF+EM+EN-WeA2, 1 

—	W	— 
Wang, H.: TF+EM+EN-WeA11, 2 

—	Z	— 
Zhao, Y.P.: TF+EM+EN-WeA8, 2; TF+EM+EN-

WeA9, 2 

 


