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8:20am  TF+AS-FrM1  Stability of Platinum Silicide Thin Films above 
1000°C, Robert Fryer, R.W. Meulenberg, G.P. Bernhardt, R.J. Lad, 
University of Maine 
Stable, electrically conductive thin films are needed as components for 
sensors and actuators operating in harsh environments at temperatures 
above 1000°C, such as those found in turbine engines, power plants, and 
high temperature materials manufacturing. The Pt-Si thin film system has 
been extensively studied in the microelectronics industry but the focus has 
been on film characteristics below 800°C. In this work, Pt-Si films were 
grown at varying compositions and deposition temperatures on sapphire and 
fused silica substrates by electron-beam evaporation of Pt and Si sources in 
ultra-high vacuum (<10-9 Torr); the chemical and thermal stability of the Pt-
Si films, both in air and in vacuum, at temperatures between 1000–1200°C 
were studied. X-ray diffraction (XRD) of as-deposited films indicates the 
formation of a polycrystalline tetragonal-Pt2Si phase for Pt-rich film 
compositions, an orthorhombic-PtSi phase near the Pt50Si50 composition, 
and an amorphous film for Si-rich film compositions. The electrical 
conductivities of these films, measured by a 4-point probe, are in the range 
of 1x106 to 5x104 S/m, with the conductivity decreasing at higher Si 
content. Annealing in vacuum at 1000°C causes grain growth and a marked 
increase in film conductivities. During annealing in air at 1000°C, film 
oxidation occurs leading to the formation of Pt-oxide phases coinciding 
with the Pt-Si phases, but only a ~3-fold decrease in film conductivities. 
After four hours at 1200°C in air, the Pt-Si films become insulating due to 
morphological roughening and formation of highly faceted Pt (111) and 
(200) nanocrystallites coexisting in a SiO2 matrix. Scanning electron 
microscopy (SEM) revealed that the use of a 50 nm capping layer of 
amorphous Al2O3, grown by atomic layer deposition (ALD) on top of the 
Pt-Si films, helps retard oxidation thereby preserving film conductivities in 
the 106-104 S/m range and leading to greater film stability as a function of 
annealing time at 1000°C in air. 

8:40am  TF+AS-FrM2  Bulge Testing for Mechanical Characterization 
of sp2/sp3 Carbon Thin Films, Joseph Rowley, R.C. Davis, R.R. Vanfleet, 
N. Boyer, Brigham Young University, S. Liddiard, M. Harker, Moxtek, Inc, 
L. Pei, Brigham Young University 
Bulge testing is a technique employed to measure material properties of thin 
films. Pressurized gas is applied to one side of a film and it's subsequent 
deformation measured. In many cases, thin films are fragile and therefore 
difficult to handle. Bulge testing has the advantage of requiring much less 
handling than other methods, resulting in fewer samples lost to error or 
accident. Carbon membranes have a wide range of characteristics, 
depending on their bonding and nano-structure. They can have very 
desirable properties such as: being chemically inert, high wear resistance 
and low friction, and high hardness and/or strength. In this work, reactively 
sputtered sp2 carbon, diamondlike carbon from a pulsed laser deposition 
process, and a carbon nanotube reinforced polymer were characterized. 
PEELS and Raman Spectroscopy were used to determine sp3/sp2 ratios and 
density, CHN testing was used to determine hydrogen content, measuring 
the resonant frequency was a measure to check stiffness, and bulge testing 
was used to obtain the Young's Modulus and tensile strength. 

9:00am  TF+AS-FrM3  Time Dependent Dielectric Breakdown 
Measurements of Porous Organosilicate Glass using Mercury and Solid 
Metal Probes, Dongfei Pei, University of Wisconsin-Madison, M.T. 
Nichols, Applied Materials, S.W. King, J.M. Clarke, Intel Corporation, Y. 
Nishi, Stanford University, J.L. Shohet, University of Wisconsin-Madison 
Time-dependent dielectric breakdown (TDDB) is a major concern for low-k 
organosilicate (SiCOH) dielectrics. To examine the effect of plasma 
exposure on TDDB degradation, both the time-to-failure (TTF) and charge-
to-failure (CTF) measurements [1] were made on porous SiCOH before and 
after exposure to Ar plasma. Significant discrepancies between mercury and 
solid-metal probes are observed. With XPS measurement data, a significant 
amount of mercury was found to have drifted into the porous SiCOH film. 
This implies that the electrical measurement of porous low-k material under 
mercury probe may be inaccurate due to this mercury drift effect.  

This work was supported by the Semiconductor Research Corporation 
under Contract 2012-KJ-2359 and by the National Science Foundation 
under Grant CBET-1066231.  

 

[1] M. T. Nichols, H. Sinha, C. A. Wiltbank, G. A. Antonelli, Y. Nishi, and 
J. L. Shohet, Appl. Phys. Lett 100, 112905 (2012) 

9:20am  TF+AS-FrM4  The Equivalent Width as a Figure of Merit for 
XPS Narrow Scans, Matthew Linford, B. Singh, Brigham Young 
University, J. Terry, Illinois Institute of Technology 
X-ray Photoelectron Spectroscopy (XPS) is a widely used surface analytical 
tool that provides information about the near surface regions of materials. In 
particular, chemical state information is often obtained from peak fitting 
XPS narrow scans. And while indispensable for XPS data analysis, peak 
fitting can be a fairly subjective exercise. Herein we introduce the use of the 
equivalent width (EW) as an additional and less subjective figure of merit 
for XPS narrow scans. The EWXPS is simply defined as the area of a narrow 
scan divided by the height of the maximum of its peak envelope. To limit 
any ambiguity in EWXPS for a series of spectra, we may also list the peak 
position of the maximum of the envelope (PEmax). We provide and discuss 
four examples that demonstrate the use of these parameters including (i) 
four C 1s narrow scans of ozone-treated carbon nanotubes (EWXPS ~ 2.11 – 
2.16 eV for a Shirley background, and up to 2.88 eV for no background, 
PEmax ~ 284.4 – 284.5 eV), (ii) a series of silicon wafers with different oxide 
thicknesses (EWXPS ~ 1.5 – 2.8 eV, PEmax ~ 99 – 103 eV), (iii) hydrogen-
terminated silicon before and after derivatization with pentyl groups, and 
after annealing of the pentyl-modified material (EWXPS ~ 0.7 – 1.0 eV, 
PEmax ~ 25.9 – 26.1 eV), and (iv) five C 1s narrow scans of nanodiamond 
samples, where three of the spectra showed charging (EWXPS ~ 2.6 – 4.9 eV, 
PEmax ~ 272.7 – 293.9 eV). In this final example, EWXPS was plotted against 
PEmax to identify the region corresponding to the materials that showed the 
least charging. EWXPS and PEmax appear to correlate with the expected 
chemistries of all the systems studied. We calculate EWXPS using a Shirley 
baseline and with no baseline at all. In setting the baseline limits for EWXPS, 
we consider the derivative of C 1s narrow scans. We also show the 
application of EWXPS to single, fitted components within a narrow scan. 
Other width functions are also discussed. 

9:40am  TF+AS-FrM5  Characterization of Epitaxial Oxides for 
Electronics, Magnetics, and Photoactivity, Tiffany Kaspar, Pacific 
Northwest National Laboratory INVITED 
Transition metal oxides offer an incredibly rich variety of properties which 
can be harnessed for countless applications. Unfortunately, this variety can 
be a curse as well as a blessing: the myriad oxidation states, crystal 
structures, and defects which may occur in the bulk and/or on the surface of 
any given oxide system makes it challenging to draw meaningful structure-
property relationships without employing a full suite of materials 
characterization techniques. To keep the system as simple and well-defined 
as possible, and to explore materials and compositions not easily attainable 
by equilibrium techniques, epitaxial deposition of oxide thin films is widely 
utilized. However, even in these “simple” systems, thorough 
characterization of the crystallinity and structural defects, oxidation state, 
stoichiometry and dopants is critical. Unwelcome surprises are often found 
in nominally “good” material when one takes the time to investigate. Our 
laboratory has explored the electronic, magnetic, and photoactive properties 
of binary and complex oxides as epitaxial thin films, and several examples 
illustrating the importance of thorough thin film characterization will be 
presented. In our work on Cr-doped anatase TiO2, a candidate dilute 
magnetic semiconductor (DMS), room temperature ferromagnetism was 
observed that appeared to depend sensitively on “preparation conditions.” 
We applied several characterization techniques, particularly x-ray 
diffraction (XRD) and transmission electron microscopy (TEM), and were 
able to correlate the presence of structural defects with room temperature 
ferromagnetic ordering. One of the most widely investigated materials as a 
potential DMS has been Co-doped ZnO, but the presence of intrinsic 
ferromagnetism in this system has been widely debated in the literature. We 
investigated very high quality epitaxial thin films with several x-ray 
absorption-based characterization techniques (XANES, EXAFS, XLD) to 
disprove the presence of intrinsic ferromagnetism in nominally defect-free 
material. In more recent work, we have explored the visible-light 
photoactivity of hematite Fe2O3 doped with Cr or V. XRD, x-ray 
photoelectron spectroscopy (XPS), scanning TEM (STEM), and 
XANES/EXAFS have been applied, as well as less widely utilized 
techniques such as non-Rutherford resonant elastic scattering (RES) to 
quantitatively measure oxygen stoichiometry non-destructively, and lab-
based x-ray photoelectron diffraction (XPD) to elucidate unique surface 
oxidation features observed by XPS. The structural properties of doped 
hematite could then be correlated with the bandgap and spectroscopic 
photoconductivity measurements.  
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10:40am  TF+AS-FrM8  Low Energy Ion Scattering Data Analysis for 
Ultra Thin Films using TRBS, Thomas Grehl, P. Brüner, ION-TOF 
GmbH, Germany, B. Detlefs, E. Nolot, H. Grampeix, CEA-LETI, France, E. 
Steinbauer, P. Bauer, Johannes Kepler University, Austria, H.H. 
Brongersma, ION-TOF GmbH, Germany 
Low Energy Ion Scattering (LEIS) is well known for its extreme surface 
sensitivity, allowing elemental characterization and quantification of the 
outermost atomic layer. This makes it a valuable tool for thin film analysis, 
e.g. to gain insights to the early stages of film growth or determine film 
closure. Also contamination analysis can be performed, again making use of 
the high surface sensitivity to assess the surface composition as the basis for 
subsequent deposition steps. 

In addition, distinct information about sub-surface layers is obtained in a 
non-destructive way, giving information about the depth distribution of 
elements up to 10 nm. Although the mechanism for this in-depth signal is 
well understood, a model for the quantification of the data needs to be 
established. 

One way of modeling the data is demonstrated using TRBS [1], a 
specialized version of TRIM [2] which was optimized for simulating ion 
scattering. Combining the TRBS data for backscattering of primary ions and 
an empirical model for the energy dependent reionization probability gives 
promising results. By fitting the simulation to the measured data 
conclusions about film composition, thickness and interface quality can be 
drawn. 

This approach will be demonstrated using different thin film examples. One 
of the sample sets consisting of HfO2/Al2O3 stacks also characterized by 
AR-XPS, XRR and GIXRF will be discussed in detail. We will show the 
possibility to determine film thickness variations in the Å range. These 
measurements can be performed in a few minutes without destroying the 
sample by sputtering. At the same time, the composition of the outer atomic 
layer is detected, making the approach well suited for routine analysis of 
films during or after deposition. 

[1] A particularly fast TRIM version for ion backscattering and high energy 
implantation, Biersack, J.P.; Steinbauer, E.; Bauer, P.; Nucl. Instr. and 
Meth. in Phys. Res., B61, 1991, 77-82 

[2] The Stopping and Range of Ions in Solids; Pergamon, New York, 1985 

11:00am  TF+AS-FrM9  Polarization-dependent X-ray Absorption Fine 
Structure Analysis of TES Pentacene Thin Films, Beatrix Pollakowski, 
Physikalisch-Technische Bundesanstalt (PTB), Germany, J. Wade, JS. Kim, 
Imperial College London, UK, F.A. Castro, National Physical Laboratory 
(NPL), UK, J. Lubeck, R. Unterumsberger, Physikalisch-Technische 
Bundesanstalt (PTB), Germany, A. Zoladek-Lemanczyk, National Physical 
Laboratory, UK, B. Beckhoff, Physikalisch-Technische Bundesanstalt 
(PTB), Germany 
Research in organic electronics shall open up alleys for many of its 
promising applications, including promising applications, including: light 
emitting diodes, photovoltaics, transistors, biosensors and photonic devices. 
Despite of the diversity of device functionalities, all these applications are 
based on thin films of organic materials and in each case their performance 
is critically dependent upon the precise arrangement and packing structure 
of the organic molecules in thin films. Our research focuses on this 
fundamental issue, seeking to better understand the relationships between 
device performance and thin film morphology of organic semiconductors on 
the molecular scale [1,2]. 

A set of 6,13-Bis((triethylsilyl)ethynyl)pentacene (TES-PEN) samples has 
been prepared on a silicon substrate by using a well controlled printing 
technique.[2] Different substrate shift speeds were used to modify the layer 
thickness and the crystallinity. 

All X-ray based measurements were carried out at the plane grating 
monochromator PGM beamline for undulator radiation in the laboratory of 
the Physikalisch-Technische Bundesanstalt PTB at BESSY II, providing 
tunable radiation of both high photon flux and high spectral purity in the 
soft x-ray range [3]. Different kinds of X-ray spectrometry (XRS) analyses 
were employed to determine the chemical binding state, elemental 
distribution depending on the depth, and lateral mass deposition. 

To analyze the chemical binding state of the molecules, the method Near-
Edge X-ray 

Absorption Fine Structure spectroscopy (NEXAFS) in fluorescence mode 
has been employed. Varying the angle of incidence in the fluorescence 
mode the information depth can be tuned to a pre-selectable depth of 
interest. In addition, the mean penetration depth at large angles of incidence 
is high enough to analyze even thicker layers of up to a few hundreds of 
nanometers as is often the case for complex organic materials. For an 
analysis of the molecular orientation, the angle between the electric field 
vector and predominant direction of the molecules has to be varied. 

Initial measurement sequences exhibit the potential of this X-ray 
spectrometry method to significantly contribute to the quantitative analysis 
of organic materials in thin films. In particular, polarization dependent 
NEXAFS offers a clear discrimination capability for the orientation of the 
molecules. 

[1] S. Wood, J.S. Kim, D.T. James, W.C. Tsoi, C.E. Murphy, and J. S. Kim, 
J. Chem. Phys. 139, 2013, 064901 

[2] D.T. James, J. M. Frost, J. Wade, J. Nelson, J. S. Kim, ACS Nano 7(9), 
2013, 7983. 

[3] J. Lubeck, B. Beckhoff, R. Fliegauf, I. Holfelder, P. Hönicke, M. 
Müller, B. Pollakowski, F. Reinhardt, J. 

11:20am  TF+AS-FrM10  Surface Induced Phases in Organic Thin 
Films: Methods of Crystal Structure Solutions, Roland Resel, C. Röthel, 
A. Pichler, Graz University of Technology, Austria, I. Salzmann, Humboldt 
University, Germany, R.G. DellaValle, O. Rosconi, University Bologna, 
Italy, T. Dingeman, Delft University of Technology, Netherlands, C. 
Simbrunner, University Linz, Austria 
A large number of organic molecules exhibit polymorphism and a well-
known phenomenon are specific crystallographic phases which are present 
exclusively in thin films. Such crystallographic phases are often denoted as 
surface induced phases, since the presence of a surface during the 
crystallisation is of primary importance for their formation. In general, such 
thin-film polymorphs do not exist as macroscopic free standing single 
crystals, so that existing methods of crystal structure solution e.g. from 
single crystal diffraction or powder diffraction does not work. A number of 
surface induced crystal structures of conjugated molecules are solved during 
the last years, examples are in relevant molecules for organic electronic 
applications like pentacene or sexithophene.  

Two different methods of structure solution from a thin films will be 
introduced. Both methods are based on grazing incidence x-ray diffraction. 
In a first step the crystallographic unit cells and the lattice constants are 
determined by indexing the diffraction pattern. The evaluation of the 
molecular packing is based on either rigid body refinement or molecular 
dynamics simulations. While rigid body refinement is based on test 
structures and a comparison of the calculated diffraction intensities with the 
experimental intensities, molecular dynamics work on energy minimisation 
of the molecular packing. It is found that the approach works best for fully 
rigid molecules like pentacene or parylene. Good results are also obtained 
for semi-rigid molecules like ternaphtalene or molecules with flexible side-
chains like dioctyl-terthiophene. In both cases the crystallographic unit cell 
is filled by two molecules. However an increasing number of molecules per 
unit cell (e.g. four) makes the solution of the surface induced phases 
difficult. Similarities and differences in the molecular packing between 
known crystal structures (from single crystal solutions) and surface induced 
phases will be discussed.  
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