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8:40am  SP+AS+BI+EM+NS+SE+SS-FrM2  2013 ASSD Student Award 
Talk: New Insights into Nanoscale Adhesion from In Situ TEM Studies, 
Tevis Jacobs, J.A. Lefever, University of Pennsylvania, J. Liu, University of 
Wisconsin-Madison, D.S. Grierson, SysteMECH LLC, K.E. Ryan, P.L. 
Keating, J.A. Harrison, United States Naval Academy, K.T. Turner, R.W. 
Carpick, University of Pennsylvania 
A fundamental understanding of adhesion is important for applications at all 
length scales, but is particularly critical in nanoscale devices and 
applications due to their high surface-to-volume ratio. Advancements in 
studying such tribological phenomena are typically hindered by the 
inaccessibility of the sliding interface. We will present nanoscale adhesion 
measurements conducted inside of a transmission electron microscope 
(TEM), using a modified in situ nanoindentation apparatus that makes 
contact with atomic force microscope (AFM) cantilever tips. This tool 
provides new opportunities to observe, identify, and quantify tribological 
processes with unprecedented access and resolution. First, using ultra-
strong carbon-based tip materials, we find that roughness of tips can greatly 
reduce the pull off force and lead to severe underestimation of the work of 
adhesion [1]. Furthermore, we have quantified adhesion by making and 
breaking contact between nanoscale silicon asperities and a flat diamond 
substrate. The snap-in distance and the pull-off force are measured with 
sub-nanometer and sub-nanonewton resolution, respectively. The shape of 
the Si asperity is determined with sub-nanometer resolution immediately 
before and after contact to verify that elastic conditions were maintained. 
From this, we independently determine the work of adhesion and range of 
adhesion. The results show that accounting for roughness has a strong effect 
on both parameters. These two results demonstrate the importance of 
applying in situ approaches to studies of adhesion. --- 1. Jacobs, T.D.B., 
Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., 
Harrison, J.A. and Carpick, R.W. The Effect of Atomic-Scale Roughness on 
the Adhesion of Nanoscale Asperities: A Combined Simulation and 
Experimental Investigation. Tribol. Lett. 50, 81-93 (2013). 

9:40am  SP+AS+BI+EM+NS+SE+SS-FrM5  Nanoscale Mapping of the 
W/Si(001) Schottky Barrier using Ballistic Electron Emission 
Microscopy, Christopher Durcan, University of Albany-SUNY, V.P. 
LaBella, University at Albany-SUNY 
The W/Si(001) Schottky barrier was spatially mapped using ballistic 
electron emission microscopy (BEEM) and ballistic hole emission 
microscopy (BHEM) using high resistivity n-type and p-type silicon 
substrates. A thin tungsten silicide is observed upon deposition utilizing 
transmission electron microscopy (TEM) and Rutherford backscattering 
spectrometry (RBS). The sum of the Schottky barrier heights from n-type 
and p-type silicon substrates agree with the silicon band gap. The BEEM 
and BHEM spectra are fit utilizing a linearization method to the power law 
of the BEEM model. Spatially resolved Schottky barrier maps are generated 
over a 1μm x 1μm area and provide insight into the spatial homogeneity of 
the barrier height. Histograms of the barrier heights show a Gaussian 
distribution, consistent with an interface dipole model. 

10:00am  SP+AS+BI+EM+NS+SE+SS-FrM6  Local Probing of 
Superconductivity in Half Heusler Compounds, Hongwoo Baek, NIST 
& Seoul National University, Republic of Korea, J. Ha, D. Zhang, 
NIST/Maryland Nano Center, University of Maryland, Y. Nakajima, P.S. 
Syers, X. Wang, K. Wang, J. Paglione, University of Maryland, Y. Kuk, 
Seoul National University, Republic of Korea, J.A. Stroscio, NIST 
Heusler alloys have attracted interest as multifunctional experimental 
platforms for topological quantum phenomena ranging from magnetism to 
superconductivity and heavy fermion behavior. The rare-earth chalcogenide 
ternary half Heusler compounds were theoretically predicted to have 
topologically nontrivial surface states due to band inversion [1]. The lack of 
inversion symmetry of the crystal lattice makes unconventional pairing 
symmetry feasible. The superconductivity in the non-centrosymmetric half 
Heusler compound YPtBi was recently reported as a promising system for 
the investigation of topological superconductivity [2]. In this work, we use 
ultra low temperature scanning tunneling micro scopy to investigate the 
superconducting properties of the ternary half Heusler compounds YPdBi 
and YPtBi. Both were theoretically proposed to have topological states with 

different band inversion strength [1], and experimentally reported as a 
topological insulator [3]. Strong spin-orbit coupling and the lack of 
inversion symmetry present the possibility of spin-triplet superconductivity 
in these materials. T he tunneling spectra of YPdBi show two different 
superconducting gaps of 0.36 meV and 0.16 meV depending on the 
measurement location. The variation in gaps might originate from 
inhomogeneity in the crystal. The superconducting gap of 0.36 meV is 
completely suppressed above a critical magnetic field of B=2.5 T, in 
agreement with bulk transport measurements. A superconducting gap of 
0.21 meV and an upper critical field of 1.25 T were measured in a circular 
superconducting domain of diameter ≈180 nm in YPtBi. Sequential addition 
of single vortices to the superconducting YPtBi domain could be observed 
with increasing magnetic field, with vortices occupying the perimeter of the 
island. These observations will be discussed in terms of island confinement 
and pairing symmetry of YPtBi.  

[1] S. Chadov, X. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, 
Nat. Mater. 9, 541 (2010). 

[2] N. P. Butch, P. Syers, K. Kirshenbaum, A. P. Hope, and J. Paglione, 
Phys. Rev. B 84, 220504(R) (2011). 

[3] W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J. Chen, G. 
Wu, and X. Zhang, Scientific Reports 3 (2013). 

10:40am  SP+AS+BI+EM+NS+SE+SS-FrM8  Multimodal Intermittent 
Contact Atomic Force Microscopy: Topographical Imaging, 
Compositional Mapping, Subsurface Visualization and Beyond, 
Santiago Solares, George Washington University 
Multifrequency atomic force microscopy (AFM) refers to a family of 
techniques that involve excitation of the microcantilever probe at more than 
one frequency [R. Garcia and E.T. Herruzo, Nature Nanotechnology 7, 217 
(2012)]. This can be carried out in a sequential manner, varying the 
excitation frequency over time, as in chirp band excitation methods, or 
simultaneously supplying drive signals containing more than one frequency 
to the cantilever shaker. The latter mode of operation commonly involves 
the simultaneous excitation of more than one cantilever eigenmode, such 
that each eigenmode is used to carry out different functions. For example, in 
a recently developed trimodal imaging scheme for soft sample 
characterization [D. Ebeling, B. Eslami and S.D. Solares, ACS Nano, 7, 
10387 (2013)], the fundamental eigenmode is used for topographical 
acquisition, as in standard tapping-mode AFM, while two higher 
eigenmodes are used for compositional mapping and subsurface 
visualization, respectively. This talk presents experimental and 
computational results for validated multimodal imaging schemes involving 
one to three eigenmodes, and discusses the expected benefits and 
complexities of including more than three eigenmodes. 
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