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2:00pm  SE+PS+TF-MoA1  Complex Magnetic Systems for High Power 
Pulsed Magnetron Sputtering, Priya Raman*, I.A. Shchelkanov, J. 
McLain, University of Illinois at Urbana Champaign, S. Armstrong, Kurt J. 
Lesker Company, B. Zhang, M. Schilling, DEXTER Magnetic 
Technologies, D.N. Ruzic, University of Illinois at Urbana Champaign 
High Power Pulsed Magnetron Sputtering (HPPMS) is a type of magnetron 
sputtering technique where high peak power pulses reaching tens of 
kilowatts are applied to the sputter magnetron target keeping the average 
power equal to that of direct current magnetron discharges by using low 
duty cycles. Due to very high power densities, HPPMS discharge leads to 
high degree of ionization of the sputtered material. These ionized sputtered 
materials assist in film growth leading to more adhesive, dense, and 
smoother films. Therefore, HPPMS is considered an ideal candidate for the 
next generation magnetron sputtering systems, however these techniques 
suffer from low deposition rate due to “return effect” of the ionized sputter 
material [1]. One way to solve this problem is to have a magnetic field 
configuration that is optimized for HPPMS discharges. Magnetic pack 
design is critical as it helps in achieving full-face target erosion and higher 
deposition rate in HPPMS. Magnet pack design is generally selected by 
experimental observation. It has been confirmed from our previous work on 
HPPMS that a spiral-shaped magnetic field design on 14 inch (36 cm) 
diameter copper target was able to produce superior plasma uniformity on 
the substrate in addition to improved target utilization without the need for 
magnet rotation [2]. Commercial 4 inch (10cm) magnetron sputter guns 
function with a variety of power supplies like DC, Pulsed-DC, Modulated 
Pulsed Power Magnetron sputtering (MPP) and HPPMS. These 4 inch 
magnetron sputter guns typically have a conventional circular magnetic 
field configuration and suffer from low deposition rate in HPPMS 
discharges. To optimize the magnet field configuration in HPPMS for the 4 
inch magnetron sputter gun, the spiral design from the 14 inch target was 
scaled down and modified to fit into 4 inch magnetron sputter gun. A new 
“ε“ design magnet pack with enhanced discharge parameters was developed 
by modifying the spiral magnet pack in COMSOL Multiphysics, which 
leads to higher deposition rate and better target utilization in HPPMS 
compared to the conventional magnet pack. The influence of “ε“ design 
magnet pack configuration on deposition rate, plasma parameters, and 
discharge stability with HPPMS (Huettinger’s HiPIMS), MPP(zPulser), DC 
and pulsed DC power supplies were investigated. The deposition rate for 
“ε” pack is 2.1±0.2 times the conventional pack for an average discharge 
power of 500W with zPulser power supply. 

1. Papa F et al 2011 Thin Solid Films 520.5 1559-1563. 

2. He Yu et al 2013 Plasma Sources Sci. Technol.22 045012. 

2:20pm  SE+PS+TF-MoA2  Triple Langmuir Probe and Ion Fraction 
Measurements in an Industrial PVD Deposition System, YuiLun Wu, 
S.S. Ma, I.A. Shchelkanov, D.N. Ruzic, University of Illinois at Urbana-
Champaign 
High Power Pulsed Magnetron Sputtering (HPPMS) discharges are an ideal 
candidate for the next generation PVD magnetron sputtering systems. 
Compared with traditional DC sputtering, HPPMS discharges offer high 
degree of ionization of the sputtered material with very high peak power on 
the target. An industrial size chamber will be used to investigate the 
HPPMS discharge operation in full scale production environments utilizing 
different power supplies. Plasma was observed to be originated from the 
race track region then expanded downward afterwards. Plasma density was 
very high (~1019-1020 m-3) when generated then decreases as it expanded [1] 
In order to understand the temporal evolution of the plasma between the 
target and the wafer plane, a time resolved triple Langmuir probe was 
employed to measure the plasma parameters such as electron temperate and 
density and scanning in a three dimensional map. Plasma parameters 
between traditional DC discharge and HPPMS discharge will be compared. 
Quartz crystal microbalance and 2 inch gridded energy analyzer will be 
designed to determine fluxes of metal ions, metal atoms and argon ions. The 
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setup will be able to tilt around 10 degrees about the wafer plane in 1 degree 
intervals and measure the angular distribution of the ion and neutral fluxes 
generated by the HPPMS discharge. 

Reference: 

[1] H.Yu, L. Meng, M. Szott, J. McLain, T.S. Cho, D.N. Ruzic, 
Investigation and optimization of the magnetic field configuration in high-
power impulse magnetron sputtering, Plasma Sources Sci. Technol. 22 
045012, 2013 

2:40pm  SE+PS+TF-MoA3  Understanding the Physics of Magnetron 
Discharges: Ionization Zones and Their Role in Transport of Charged 
Particles, Matjaž Panjan, R. Franz, A. Anders, Lawrence Berkeley 
National Laboratory INVITED 
Magnetron sputtering is one of most commonly used techniques for the 
deposition of thin films. The physics of magnetron discharges has been 
intensively studied, however, recent investigations revealed that our 
understanding is rather incomplete. To the naked eye the ionization process 
appears to be homogeneously distributed along the racetrack – i.e. the 
region of strongest target erosion caused by sputtering. Imaging of the 
magnetron discharges with intensified CCD cameras using short exposure 
times revealed differently, namely, the plasma is concentrated in several 
zones along the racetrack [1-3]. These so-called ionization zones or spokes 
are organized in periodic or quasi-periodic patterns that move in the E × B 
direction with approximately 1/10 of the electron drift speed (where E and 
B are the electric field and magnetic field vectors). Recent experiments 
further revealed that ionization zones are a fundamental feature of 
magnetron discharges run in pulsed and continuous mode [4]. In this talk, 
recent advances in understanding the ionization zone phenomenon will be 
reviewed. The interpretation of the formation, drift, self-sustainability, and 
self-organization of ionization zones will be presented with emphasis on 
potential, electric field and ionization rate distributions. It will be shown 
that ionization zones play a critical role in the transport of both electrons 
and ions [4-6]. 

[1] A. Kozyrev et al., Plasma Physics Reports 37 (2011) 621 

[2] A. Anders et al., J. Appl. Phys., 111 (2012) 053304 

[3] A.P. Ehiasarian et al., Appl. Phys. Lett. 100 (2012) 114101 

[4] M. Panjan et al., Plasma Sources Sci. Technol., 23 (2014) 025007 

[5] A. Anders et al., Appl. Phys. Lett., 103 (2013) 144103 
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3:40pm  SE+PS+TF-MoA6  Properties of Ionization Zones in 
Magnetron Sputtering Observed in the Transition Region between dc 
and HiPIMS, André Anders, Y. Yang, J. Liu, Y. Qiu, Lawrence Berkeley 
National Laboratory 
Research in the last years revealed that the plasma in high power impulse 
magnetron sputtering (HiPIMS) is rich in structure, featuring self-organized 
patterns [1], plasma flares [2], and azimuthally asymmetric particle jets [3]. 
Most prominent are drifting regions of enhanced excitation and ionization, 
which are called ionization zones but sometimes also labeled spokes in 
analogy to similar phenomena seen in other E x B devices such as Hall 
thrusters. Fast imaging of ionization zones in HiPIMS revealed the presence 
of several distinct ionization zones, for example 3-5 zones in the case of 
sputtering with a 3-inch magnetron at peak currents of the order 100 A. The 
zone drift velocity is several 1000 m/s, up to 104 m/s, yet much slower than 
the E x B drift of electrons, which is of the order of 105 m/s. In contrast, 
when sputtering continuously (dc) at very low current (less than 1 A), and at 
low pressure (less than 1 Pa), we find only one ionization zone moving at 
low velocity in the reverse, i.e. the – E x B direction. Increasing the current 
and pressure tends to split the zone into two and occasionally three zones. 
The appearance of each zone depends on current and other factors such as 
the pressure of the process gas. In this contribution, we explore the 
transition regime between dc operation at low current and HiPIMS 
operation with high peak currents. Using fast streak and frame imaging 
cameras we detect even more structures and structure changes than 
anticipated. We conclude that the discharge and its particle transport is 
governed by zone-related instabilities and turbulence.  

[1] A. Anders, et al., J. Appl. Phys. 111 (2012) 053304. 
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4:00pm  SE+PS+TF-MoA7  Observation of Multiple Charge States and 
High Ion Energies in High-Power Impulse Magnetron Sputtering 
(HiPIMS) and Burst HiPIMS using a LaB6 Target, Robert Franz, 
Montanuniversität Leoben, Austria, C. Clavero, Lawrence Berkeley 
National Laboratory, R. Bolat, Nazarbayev University, Kazakhstan, R. 
Mendelsberg, A. Anders, Lawrence Berkeley National Laboratory 
In high-power impulse magnetron sputtering (HiPIMS), a variation of 
pulsed magnetron sputtering, short high-voltage pulses are utilized to create 
discharges with high current densities and a high degree of ionization of the 
target atoms. In recent years, more complex pulse patterns than the single 
pulses used in the original or conventional HiPIMS have been developed, 
e.g. burst-HiPIMS where a series of very short (few µs) pulses are bunched 
to form bursts.  

In the present work, the charge-state-resolved ion energies of HiPIMS 
discharges were measured, using a LaB6 target, as a function of charging 
voltage, pulse length, pulse frequency and on/off time ratio within applied 
HiPIMS bursts [1]. The highest charge states can reach +2 and +3 for boron 
and lanthanum ions, respectively. At high discharge powers, the B/La ion 
ratio can exceed the respective atom ratio in the target producing B-rich 
plasma with up to 98% boron ions. In the case of two-segmented bursts 
with high on/off time ratios, La3+ is the dominating lanthanum ion species 
and the ion energy distribution of B+ shows a pronounced high-energy tail 
extending up to 750 eV. The measured plasma compositions, ion charge 
states and ion energies are discussed within the established framework of 
HiPIMS discharges and the recent postulation that potential humps are 
associated with drifting ionization zones. The recorded high B/La ion ratios 
are a result of complex effects related to particle fluxes in the HiPIMS 
plasma of compound targets, as explained with the help of an expanded 
schematic representation of self-sputtering and gas atom recycling. The 
high energies of the B+ ions are based on a combination of the self-
sputtering of boron, backscattering of incident boron ions on lanthanum 
atoms in the target and acceleration by localized potential humps [2]. 
Further evidence for potential humps is provided by the observed charge-
state dependence of ion energies and features between the thermal peak and 
high-energy tail of the ion energy distribution functions. 

[1] R. Franz, C. Clavero, R. Bolat, R. Mendelsberg, A. Anders, Plasma 
Sources Sci. Technol. 23 (2014) 035001. 

[2] A. Anders, M. Panjan, R. Franz, J. Andersson, P. Ni, Appl. Phys. Lett. 
103 (2013) 144103. 

4:20pm  SE+PS+TF-MoA8  Pulsed Magnetron Sputtering of Novel 
Multifunctional Films, Jaroslav Vlcek, J. Rezek, J. Kohout, University of 
West Bohemia, Czech Republic 
High-power impulse magnetron sputtering with a pulsed reactive gas flow 
control was used for the reactive deposition of Ta-O-N films with tunable 
composition and properties [1]. The depositions were performed using a 
strongly unbalanced magnetron with a planar directly water-cooled Ta 
target in Ar-O2-N2 gas mixtures at an average target power density of up to 
2.4 kWcm-2 in a pulse. The repetition frequency of pulses was 500 Hz at a 
fixed 50 µs voltage pulse length and the total pressure close to 2 Pa. An 
effective reactive gas flow control made it possible to adjust the film 
composition from Ta2O5 to a mixture of Ta3N5 and TaN. We prepared Ta-
O-N films possessing appropriate band-edge levels for water splitting and a 
narrow optical band gap of 2.5 eV that permits a visible light absorption up 
to 500 nm. 

Pulsed dc magnetron co-sputtering of a single target (B4C-Si, B4C-Zr or 
B4C-Hf-Si) in Ar-N2 gas mixtures was used for deposition of different 
multifunctional films. The repetition frequency of pulses was 10 kHz at a 
fixed 85 µs voltage pulse length and the total pressure of 0.5 Pa. We present 
the results obtained for amorphous Si-B-C-N films with an exceptionally 
high thermal stability (above 1500°C) and very high optical transparency 
[2], for nanostructured Zr-B-C-N films with a high hardness (37 GPa) and 
high electrical conductivity [3], and for nanostructured Hf-B-Si-C films 
with a high hardness (34-37 GPa), high electrical conductivity and 
significantly improved oxidation resistance in air up to 800°C [4]. 

[1] J.Rezek, J.Vlcek, J.Houska, R.Cerstvy, Thin Solid Films (submitted). 
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Surf. Coat. Technol.  

226 (2013) 34. 

[3] J.Vlcek, P.Steidl, J.Kohout, R.Cerstvy, P.Zeman, S.Proksova, V.Perina, 
Surf. Coat. Technol. 215 (2013) 186. 

[4] J.Kohout, J.Vlcek, J.Houska, P.Mares, R.Cerstvy, P.Zeman, M. Zhang, 
J.Jiang, E.I. Meletis, S. Zuzjakova, Surf. Coat. Technol. (submitted). 

4:40pm  SE+PS+TF-MoA9  Surface Engineering of Magnesium and 
Magnesium Alloys for Improved Corrosion Resistance, Michael Melia, 
J.R. Scully, J.M. Fitz-Gerald, University of Virginia 
Due to the need for significant weight reduction of structural components, 
the development of Mg alloys has been ongoing over the last 100 years. 
One long-standing obstacle regarding the use of Mg alloys for widespread 
field application is their intrinsically poor corrosion resistance and lack of 
surface films or oxides that enable “self-healing” or active scratch 
protection. Micro-galvanic induced “self-corrosion” due to alloy 
heterogeneity is a key concern. The effects of Excimer laser surface 
modification and electric arc surface processing on the corrosion resistance 
of commercially pure Mg (99.8 wt% Mg) and Mg alloy (AZ31B) is 
investigated. Non-equilibrium processing is being investigated to control 
surface chemistry, microstructure, and phase formation in order to mitigate 
the micro-galvanic corrosion with the initial goal of microstructural and 
composition homogenization. In an attempt to achieve surface 
homogenization and control Mg evaporation, a range of operating 
parameters (energy density, dwell time, and processing atmosphere) were 
explored. 

Surface morphology, composition, and local phase imaging were performed 
with scanning electron microscopy in secondary and backscattered electron 
imaging modes. X-ray diffraction was used to examine phase and surface 
regions in grazing incidence mode. Corrosion characterization was 
performed in a standard three electrode corrosion cell with an aerated 0.6 M 
NaCl solution. Electrochemical Impedance Spectroscopy (EIS) (10,000 to 
0.001Hz) and potentiodynamic polarization scans (0.1 mV/s) were used to 
determine corrosion resistance, anodic/cathodic behavior, pitting potential 
and open circuit potential (OCP). 

Preliminary results confirm that a measured level of surface 
homogenization was achieved irrespective of process gasses used (Ar, N2, 
He). Moreover, in the case of N2 processed 99.8% purity Mg samples, the 
formation of Mg3N2 was found to have a significant impact on the corrosion 
resistance. The AZ31B samples processed in Ar exhibited a similar 
corrosion response to the N2 processed surfaces, suggesting homogenization 
was a larger factor than nitriding. The cathodic behavior consistently 
exhibited a significant reduction in the rate of the H2 evolution reaction, 
more apparent in 99.8% purity Mg. Furthermore, the OCP was reduced by 
100-350 mV. Impedance results support these findings with a significant 
improvement in polarization resistance after treatment. However, processed 
samples exhibited a minimal change in anodic behavior besides minor 
fluctuations in pitting potential. Possible mechanisms for the inhibition of 
the cathodic reaction rate will be presented and discussed. 

5:00pm  SE+PS+TF-MoA10  Designing a Precious Metal-Free Catalyst 
for Purification of Automotive Exhausts: NO Reduction and CO 
Oxidation on CuO(110) Surface, H. Kasai, J. Moreno, A.A. Padama, 
Osaka University, Japan, C. Matsuda, K. Naito, M. Uenishi, H. Tanaka, 
Daihatsu Motor Co., Ltd, Japan, Y. Nishihata, Japan Atomic Energy 
Agency, Japan, Mamoru Sakaue, Osaka University, Japan 
Nitrogen oxide (NOx) and carbon monoxide (CO) are known by-products of 
fossil fuel combustion, which greatly contribute to atmospheric pollution. 
Thus, understanding the conversion process of NOx and CO into less 
hazardous gases is of utmost importance. It is well known that precious 
metals (such as Rh, Pd and Pt) work well to reduce these pollutant gases, 
but their high cost is a road block to a more prevalent use. Therefore, a 
more readily available and inexpensive material with comparable, if not 
better, catalytic performance is needed. Our group has investigated the role 
of surfaces as a foundation to realizing designer materials, in this case for 
exhaust purification [1]. In particular, we have previously studied the 
dissociation of nitric oxide (NO) on Cu2O(111) surface [2-4]. In this work, 
we look at the possibility of using a CuO catalyst for NO reduction and CO 
oxidation. Using density functional theory, we first investigated the 
dissociation process of NO on CuO(110) surface [5]. We found that NO is 
molecularly adsorbed perpendicular to the surface on the active hollow site 
between the surface Cu-atoms with an N-end configuration. An energy 
barrier of 1.1 eV was obtained for NO dissociation. The dissociated state 
was found to be most stable when the coadsorbed N and O atoms are on 
adjacent hollow sites. In comparison with the Rh(111) surface, the 
CuO(110) provides lower activation barrier for NO dissociation and lower 
adsorption energies for coadsorbed N and O atoms. To further investigate 
the oxidation of CO after the NO dissocation process, CO was adsorbed on 
the CuO(110) surface with coadsorbed N and O atoms. In this case, CO was 
molecularly adsorbed on top of a surface Cu atom while attracting the 
adsorbed O atom. An energy barrier of 0.9 eV was obtained for the CO 
oxidation process. This barrier was lower than the case of CO oxidation on 
Rh(111) surface with adsorbed oxygen atoms. The resulting CO2 molecule 
was stably adsorbed with its center on top of a surface Cu atom. The results 
obtained in this study are in agreement with our experimental findings. In 
conclusion, we believe that CuO is a very promising catalyst for the 
purification of automotive exhausts. 
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