Thursday Afternoon, November 13, 2014

Fundamentals & Biological, Energy and Environmental Applications of Quartz Crystal Microbalance Focus Topic

Room: 317 - Session QC+AS+BI+MN-ThA

Applications of QCM

Moderator: Electra Gizeli, IMBB-FORTH, Heraklion, Crete, Greece, Adam Olsson, McGill University, Canada

2:20pm QC+AS+BI+MN-ThA1 Permeability of a Model Stratum Corneum Lipid Membrane, Daeyeon Lee, University of Pennsylvania INVITED

The stratum corneum (SC), composed of corneocytes and intercellular lipid membranes, is the outermost layer of the epidermis, and its main function is the regulation of water loss from the skin. The major components of the SC lipid membranes are ceramides (CER), cholesterol (CHOL), and free fatty acids (FFA), which are organized in multilamellar structures between corneocytes. The intercellular SC lipid membrane is believed to provide the main pathway for the transport of water and other substances through the skin. While changes in the composition of the SC lipid membranes due to intrinsic and/or extrinsic factors have been shown to affect the organization of the lipid molecules, little is known about the effect of compositional changes on their water permeability. In this talk, I will present our results on the effect of composition on the permeability of a model SC lipid membrane consisting of ceramide, palmitic acid, and cholesterol using a quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D method enables the direct determination of the diffusivity (D), solubility (S), and permeability (P) of water through the model SC lipid membranes. In the first part, I will discuss the effect of membrane composition on the water permeability of the model SC lipid membrane. We find that D and S weakly depend on the chain length of saturated fatty acids, while P shows no significant dependence. In contrast, the saturation level of free fatty acids and the structure of ceramide have significant influence on D and S, respectively, resulting in significant changes in P. In the second part of the talk, I will present our recent work on the effect of common anionic surfactants on the water permeability of the model SC lipid membrane. Particularly, the effect of sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) with one or three ethoxy groups on the water permeability of the model SC lipid membrane is compared.

3:00pm QC+AS+BI+MN-ThA3 Investigation of Interaction between a Monoclonal Antibody and Solid Surfaces via Multiple Surface Analytical Techniques, *Xia Dong, C.A.J. Kemp, Z. Xiao*, Eli Lilly and Company

The interaction between proteins and surfaces is an important topic in the field of biomaterials. With the development of monoclonal antibody products, there is increasing interest in understanding the nature of the interactions between antibodies and the solid surfaces they contact during manufacturing processes and storage. In this study, a monoclonal antibody was introduced to quartz crystal microbalance (QCM) substrates coated with gold, stainless steel and silicon carbide. The samples were characterized by multiple surface analytical techniques, including TOF-SIMS and XPS. The preliminary XPS results suggest that the protein adsorbed at higher concentration on gold than on stainless steel and silicon carbide, while nitrogen concentration detected on stainless steel is slightly higher than on silicon carbide. This is generally consistent with the QCM results. TOF-SIMS spectra also suggest that the interaction between the antibody and three substrates is not the same. The fragmentation patterns detected in the TOF-SIMS spectra obtained from silicon carbide and stainless steel are similar to each other, but they are different from those detected on gold. The interaction between the antibody and stainless steel coupons will be further studied to understand the influence of surface morphology.

3:20pm QC+AS+BI+MN-ThA4 Combining Spectroscopic Ellipsometry and Quartz Crystal Microbalance to Study Biological Hydrogels – Towards Understanding Nucleo-Cytoplasmic Transport, N.B. Eisele, S. Ehret, R. Zahn, CIC biomaGUNE, Spain, S. Frey, D. Gorlich, MPI Biophysical Chemistry, Germany, Ralf Richter, CIC biomaGUNE & Université Grenoble Alpes & MPI Intelligent Systems, Spain

Nature has evolved hydrogel-like materials that are exquisitely designed to perform specific biological functions. An example of such a material is the nuclear pore permeability barrier, a nano-sized meshwork of intrinsically

disordered proteins (so called FG nups) that fills the nuclear pores (i.e. the roughly 40 nm wide channels across the nuclear envelope) and controls the entry of macromolecules into the nucleus of eukaryotic cells. The permeability barrier exhibits a unique selectivity in transport: very small molecules can cross the barrier efficiently, while larger objects are delayed or blocked unless they are bound to specialized proteins, so called nuclear transport receptors (NTRs). How size and species selectivity are encoded in the hydrogel-like properties of the permeability barrier is currently not well understood.

We have developed monolayers of end-grafted FG nups as a nano-scale model system of the permeability barrier. The planar geometry of this well-defined biomimetic film affords detailed and quantitative characterization – not accessible for the native system - with a toolbox of surface-sensitive characterization techniques. In particular, we present the application of the *in situ* combination of quartz crystal microbalance (QCM-D) and spectroscopic ellipsometry (SE) to quantify film thickness, hydration and viscoelastic properties as a function of protein surface density.

We will present how this experimental data, combined with polymer theory, allows us to better understand the relationship between the supramolecular organization and dynamics of the permeability barrier, its physico-chemical properties and its biological function. We demonstrate that attractive interactions between FG nups play an important role in tuning the assembly and morphology of FG nup meshworks, and highlight that even rather weak interactions – typically a few kT per biopolymer chain – have functional importance. We show also how the interaction between NTRs and FG nup meshworks is tuned to afford strong enrichment and at the same time rapid entry and exit of NTRs in the permeability barrier, thereby facilitating NTR translocation.

Taken together, these studies contribute important information to understand the mechanism of size-and species-selective transport across the nuclear pore permeability barrier. The mechanistic insight gained should be useful towards the design of bioinspired species-selective filtering devices. Moreover, the presented procedures for the acquisition and analysis of combined QCM-D/SE data are broadly applicable for the characterization of ultrathin biomolecular and other polymer films.

4:00pm QC+AS+BI+MN-ThA6 Probing Nanoparticle-Biofilm Interactions using Quartz Crystal Microgravimetry and Complementary Surface-sensitive Methods, *Kaoru Ikuma**, University of Massachusetts, Z. Shi, A.V. Walker, University of Texas at Dallas, B.L.T. Lau, University of Massachusetts

The environmental fate and transport of nanoparticles (NPs) have been a rising topic of concern due to the increased use of nanotechnology. Recent studies have shown that NPs are likely to interact readily with and accumulate in environmental biofilms. Biofilms are a ubiquitous form of microbial presence where cells attached on solid surfaces are surrounded by a sticky matrix of extracellular polymeric substances (EPS). The EPS matrix is considered to be highly heterogeneous and chemically complex. Polysaccharides and proteins are known to be major constituents of EPS and may greatly impact the likelihood of interactions occurring between NPs and biofilms.

In this study, we examined the deposition of NPs onto surface-immobilized proteins to determine the importance of protein-rich domains in the interfacial interactions between NPs and biofilms. Such interfacial processes are the initial and potentially rate-limiting step in NP-biofilm interactions. The deposition kinetics and extent of model hematite (α -Fe₂O₃) NPs onto protein-coated silica surfaces were quantitatively measured by quartz crystal microbalance with dissipation (QCM-D). Model proteins including bovine serum albumin (BSA) and lysozyme as well as bacterial total proteins were used herein. The proteins were initially adsorbed onto either negatively-charged bare or positively-charged poly-L-lysine (PLL)precoated silica sensors to assess the effects of the orientation of surfaceimmobilized proteins. In addition to QCM-D, other complementary surfacesensitive techniques such as Kelvin probe force microscopy and time-offlight secondary ion mass spectrometry (TOF SIMS) were used to characterize the mechanisms of interaction between the NPs and the protein-coated surfaces.

QCM-D results indicated that for all tested proteins, the total deposition extent of hematite NPs was significantly greater on protein layers that were adsorbed onto bare silica compared to PLL-precoated silica sensors. TOF SIMS results showed that the amino acid profiles of the topmost surface of the protein layers on bare and PLL-precoated silica sensors were distinctly different, suggesting that NP deposition was greatly influenced by the

* QCM Focus Topic Young Investigator Award

orientation of the surface-immobilized proteins. Both the extents and rates of NP deposition were also dependent on the type of model protein. Based on the surface charge, topography, and hydrophobicity characterization results, the observed interfacial interactions between hematite NPs and surface-immobilized proteins appeared not to be controlled by one dominant interaction force but by a combination of electrostatic, steric, hydrophobic, and other interactions.

4:20pm QC+AS+BI+MN-ThA7 Association and Entrapment of Membrane-Targeted Nanoparticles with Different Binding Avidity: A QCM-D and single Particle Tracking Study, Anders Lundgren*, B. Agnarsson, S. Block, F. Höök, Chalmers University of Technology, Sweden Nanoparticles specifically targeted to receptors in the cell membrane are interesting for various applications such as intracellular delivery and visualization of diffusing membrane proteins, so-called single particle tracking. These diverse applications require particles optimized to display different binding properties: In this model study we investigated the effect of particle size and ligand density on the association rate and mobility/entrapment of biotin functionalized core-shell nanoparticles to supported lipid bilayers sparsely modified with streptavidin. Gold-PEG core-shell nanoparticles were synthesized with two different core sizes, 20 and 50 nm in diameter, and a shell (10 nm) of mixed uncharged, negatively charged and biotinylated PEG-ligands, the biotin content varied from one to several hundreds per particle. Particle binding was examined on the ensemble level using QCM-D and on single particle level using novel light scattering microscopy that will be detailed. At physiological salt conditions, binding of 50 nm particles were weakly dependent on the number of displayed biotin ligands, whereas the association of 20 nm particles were strongly attenuated in direct relation to the ligand density. At low salt conditions, binding of the larger particles resembled that of the smaller particles, with a strong dependence on ligand density. PEGylated particles without biotin-ligands did not bind at any condition. Thus, it was concluded that specific particle affinity is strongly attenuated by particle size and surface charge due to different interaction potential between the particle and the surface. On the contrary, no dependence on particle size was observed for the mobility of single particles displaying diffusion constants close to 0.4 or 0.8 μ m²/s irrespective of particle size, which was similar to ensemble measurements using FRAP data on FITC-labelled streptavidin (0.5 μ m²/s). Only particles with a single surface tether show continuous diffusion; after formation of a second surface bond particles got quickly entrapped and formed additional bonds. In QCM-D measurements, this was manifested by a continuously decreasing dissipative response per particle for binding of particles with increasing ligand density. Together, QCM-D and particle tracking data indicates that two different mechanisms may lead to particle trapping and ultimately particle wrapping: For very high ligand densities membrane receptors in the membrane diffuse to and partly wraps around immobile particles, whereas for intermediate ligand densities the diffusion and dynamics of the particles themself facilitate the formation of additional surface bonds and eventual wrapping.

4:40pm QC+AS+BI+MN-ThA8 Complementary Chemiresistor and QCM Studies of Biomacromolecules as Sorptive Materials for Vapor Sensing, *Kan Fu*, *X. Jiang*, *B.G. Willis*, University of Connecticut

Biomolecules are integral components of current sensing and diagnostic technologies including enzymatic glucose sensors, DNA microarrays, and antigen-antibody assays. The use of biomolecules in non-biological situations, however, is a burgeoning new field that may break the existing boundaries of biomolecule applications in exclusively biological context. Extensive studies have already been performed in bioelectronics using small biomolecules and biomacromolecules, revealing promising results regarding charge transport and conformation dependence. In the area of sorptive chemical sensors, biomacromolecules have inherent advantages over conventional synthetic polymers. DNA oligomers have precisely defined sequences through synthesis, they are monodisperse, and they can self-assemble into nanoscale structures. These features make them interesting for vapor sensing of small molecules.

In this work, a series of 8 custom-designed, single-strand DNA (ssDNA) were integrated with chemiresistors and QCM to make sensors. Chemiresistor sensors were made by depositing gold nanoparticles functionalized with ssDNA molecules onto microfabricated electrodes, and QCM sensors were made by depositing films of ssDNA on quartz crystals. While chemiresistors give high signal-to-noise ratios and significantly better limits of detection (LODs) and may eventually be the transducer for practical applications, QCM is a purely mass-sensitive technique that reveals fundamental absorption properties in terms of partition coefficients. By exposing these sensors to a series of organic vapors, the resistance change and mass change of the two sensor platforms can be compared. It is

demonstrated that, similar to previous comparative studies of gold nanoparticles functionalized with small organic thiols and synthetic polymer modified QCM crystals, the nanoparticle-based chemiresistor response follows the QCM-traced mass change. The studies show that sorption and conductance modulation mechanisms of vapors on biomolecules are similar to sensors with small organic molecules, but the polarity preference is very different. A model relating partition coefficients K in and chemiresistor responses $\Delta R/R$ is thereafter suggested to account for the links between these 2 sensing systems. It needs to be noted that points which deviate from the modeled trends are likely the result of more complex vapor-material interactions. From here, we demonstrate that DNA oligomers are rich in diversity, which may qualify these materials for array-based and specific sensing applications. It also establishes QCM as a useful complementary tool for evaluating materials for various sensing systems.

5:00pm QC+AS+BI+MN-ThA9 The Evolution of Complex Artificial Cell Membranes: Combining Patterned Plasma Polymers and Supported Lipid Bilayers, *Hannah Askew*, *S.L. McArthur*, Swinburne University of Technology, Australia

Supported lipid bilayers (SLBs) have provided researchers with stable and reproducible platforms to recreate cell membrane environments. Such models are useful for studying a variety of processes including cell signalling and drug-membrane interactions. Unfortunately, current models are lacking in their ability to mimic complex micro and nanoscale architectures found within native cell membranes. Many methods of SLB patterning have emerged to form these complex structures. In particular prepatterned substrates combined with vesicle collapse are of great interest as they eliminate complications associated with preserving membrane integrity during patterning. Plasma polymerisation provides a versatile, one step, dry method of creating thin films of different chemistries on almost any substrate. Successful bilayer formation on such coatings would be beneficial for promoting specific organisation in complex SLB systems using patterned surface chemistries. In the initial stages of this work we studied the effect of plasma polymer chemistry on the lipid structures formed using vesicle collapse. DOPC lipid vesicles were introduced to commonly used coatings formed from plasma polymerised allylamine (ppAAm) and acrylic acid (ppAAc). The coatings were characterised using X-Ray Photoelectron Spectroscopy (XPS), contact angle and Quartz Crystal Microbalance with Dissipation (QCM-D) techniques. Lipid interaction kinetics and lipid mobility were characterised using QCM-D and Fluorescence Recovery after Photobleaching (FRAP) respectively. It was shown that a variety of lipid structures including mobile bilayer can be formed on ppAAc using pH alone to control electrostatic interactions. ppAAm formed immobile vesicular layers under all conditions tested and could therefore be used as a barrier to confine fluid areas of bilayer. Work is now being undertaken to create single and dual plasma polymer patterns on both glass and silicon wafer. Standard photolithography and ion beam methods will be employed to pattern on both a micro and nanoscale. In this way plasma polymer patterns may enable the formation of increasingly complex SLB architectures.

5:20pm QC+AS+BI+MN-ThA10 Applications of QCM in Industrial R&D, Andrey Soukhojak, The Dow Chemical Company

An overview of diverse applications of QCM enabled by its unparalleled sensitivity to mass and viscoelastic properties of thin samples in R&D of The Dow Chemical Company will be presented.

^{*} QCM Focus Topic Young Investigator Award

Authors Index

Bold page numbers indicate the presenter

— A —

Agnarsson, B.: QC+AS+BI+MN-ThA7, 2 Askew, H.J.: QC+AS+BI+MN-ThA9, **2**

— B —

Block, S.: QC+AS+BI+MN-ThA7, 2

— D —

Dong, X.: QC+AS+BI+MN-ThA3, 1

E E

Ehret, S.: QC+AS+BI+MN-ThA4, 1 Eisele, N.B.: QC+AS+BI+MN-ThA4, 1

— F —

Frey, S.: QC+AS+BI+MN-ThA4, 1 Fu, K.: QC+AS+BI+MN-ThA8, **2** — G — Gorlich, D.: QC+AS+BI+MN-ThA4, 1 — H —

Höök, F.: QC+AS+BI+MN-ThA7, 2

Ikuma, K.: QC+AS+BI+MN-ThA6, 1

Jiang, X.: QC+AS+BI+MN-ThA8, 2 — **K** —

Kemp, C.A.J.: QC+AS+BI+MN-ThA3, 1 — L —

Lau, B.L.T.: QC+AS+BI+MN-ThA6, 1 Lee, D.: QC+AS+BI+MN-ThA1, 1 Lundgren, A.O.: QC+AS+BI+MN-ThA7, 2 — M —

McArthur, S.L.: QC+AS+BI+MN-ThA9, 2

Richter, R.P.: QC+AS+BI+MN-ThA4, 1

Shi, Z.: QC+AS+BI+MN-ThA6, 1 Soukhojak, A.N.: QC+AS+BI+MN-ThA10, **2**

— W —

Walker, A.V.: QC+AS+BI+MN-ThA6, 1 Willis, B.G.: QC+AS+BI+MN-ThA8, 2

Xiao, Z.: QC+AS+BI+MN-ThA3, 1 — **Z** —

Zahn, R.: QC+AS+BI+MN-ThA4, 1